Abstract:
A new method for forming an array of high aspect ratio semiconductor nanostructures entails positioning a surface of a stamp comprising a solid electrolyte in opposition to a conductive film disposed on a semiconductor substrate. The surface of the stamp includes a pattern of relief features in contact with the conductive film so as to define a film-stamp interface. A flux of metal ions is generated across the film-stamp interface, and a pattern of recessed features complementary to the pattern of relief features is created in the conductive film. The recessed features extend through an entire thickness of the conductive film to expose the underlying semiconductor substrate and define a conductive pattern on the substrate. The stamp is removed, and material immediately below the conductive pattern is selectively removed from the substrate. Features are formed in the semiconductor substrate having a length-to-width aspect ratio of at least about 5:1.
Abstract:
In an aspect, the present invention uses projection micro stereolithography to generate three-dimensional microvessel networks that are capable of supporting and fostering growth of a cell population. For example, provided is a method of making a microvascularized bioreactor via layer-by-layer polymerization of a photocurable liquid composition with repeated patterns of illumination, wherein each layer corresponds to a layer of the desired microvessel network. The plurality of layers are assembled to make a microvascular network. Support structures having different etch rates than the structures that make up the network provides access to manufacturing arbitrary geometries that cannot be made by conventional methods. A cell population is introduced to the external wall of the network to obtain a microvascularized bioreactor. Provided are various methods and related bioreactors, wherein the network wall has a permeability to a biological material that varies within and along the network.
Abstract:
Disclosed herein are electrochemical fabrication platforms for making structures, arrays of structures and functional devices having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods, systems and system components use an electrochemical stamping tool such as solid state polymeric electrolytes for generating patterns of relief and/or recessed features exhibiting excellent reproducibility, pattern fidelity and resolution on surfaces of solid state ionic conductors and in metal. Electrochemical stamping tools are capable high throughput patterning of large substrate areas, are compatible with commercially attractive manufacturing pathways to access a range of functional systems and devices including nano- and micro-electromechanical systems, sensors, energy storage devices, metal masks for printing, interconnects, and integrated electronic circuits.
Abstract:
A new method for forming an array of high aspect ratio semiconductor nanostructures entails positioning a surface of a stamp comprising a solid electrolyte in opposition to a conductive film disposed on a semiconductor substrate. The surface of the stamp includes a pattern of relief features in contact with the conductive film so as to define a film-stamp interface. A flux of metal ions is generated across the film-stamp interface, and a pattern of recessed features complementary to the pattern of relief features is created in the conductive film. The recessed features extend through an entire thickness of the conductive film to expose the underlying semiconductor substrate and define a conductive pattern on the substrate. The stamp is removed, and material immediately below the conductive pattern is selectively removed from the substrate. Features are formed in the semiconductor substrate having a length-to-width aspect ratio of at least about 5:1.
Abstract:
Disclosed herein are electrochemical fabrication platforms for making structures, arrays of structures and functional devices having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods, systems and system components use an electrochemical stamping tool such as solid state polymeric electrolytes for generating patterns of relief and/or recessed features exhibiting excellent reproducibility, pattern fidelity and resolution on surfaces of solid state ionic conductors and in metal. Electrochemical stamping tools are capable high throughput patterning of large substrate areas, are compatible with commercially attractive manufacturing pathways to access a range of functional systems and devices including nano- and micro-electromechanical systems, sensors, energy storage devices, metal masks for printing, interconnects, and integrated electronic circuits.