摘要:
The semiconductor of the present invention has iron sulfide and a forbidden band control element contained in the iron sulfide. The forbidden band control element has a property capable of controlling the forbidden band of iron sulfide on the basis of the number density of the forbidden band control element in the iron sulfide. An n-type semiconductor is manufactured by incorporating a group 13 element of the IUPAC system into iron sulfide. Moreover, a p-type semiconductor is manufactured by incorporating a group Ia element into iron sulfide. A semiconductor junction device or a photoelectric converter is manufactured by using the n-type semiconductor and the p-type semiconductor.
摘要:
A substrate transfer apparatus comprising: a plurality of floating-transfer guide plates adjacent to each other, each of guide plates having a plurality of floating gas ejecting holes; a gas supplying source; a tray to mount a substrate to be transferred, and that is floated by the floating gas; and a transfer arm for transferring the floated tray from the guide plate to the adjacent other guide plate, wherein the tray includes both side edges, and a contact/engagement portion formed at the respective both side edges for the transfer arm, each of the transfer arms including a base portion that can horizontally reciprocate along a rail provided so as to be parallel to the transfer direction, a guide portion provided to the base portion, that can horizontally reciprocate in a direction orthogonal to the transfer direction, and an arm portion provided to the guide portion, that can horizontally reciprocate in the direction parallel to the transfer direction.
摘要:
A substrate transfer apparatus comprising: a plurality of floating-transfer guide plates adjacent to each other, each of guide plates having a plurality of floating gas ejecting holes; a gas supplying source; a tray to mount a substrate to be transferred, and that is floated by the floating gas; and a transfer arm for transferring the floated tray from the guide plate to the adjacent other guide plate, wherein the tray includes both side edges, and a contact/engagement portion formed at the respective both side edges for the transfer arm, each of the transfer arms including a base portion that can horizontally reciprocate along a rail provided so as to be parallel to the transfer direction, a guide portion provided to the base portion, that can horizontally reciprocate in a direction orthogonal to the transfer direction, and an arm portion provided to the guide portion, that can horizontally reciprocate in the direction parallel to the transfer direction.
摘要:
A substrate 1 for a photoelectric conversion device includes a first transparent conductive layer 5 formed on at least a part of the surface region of a transparent substrate 3, the first transparent conductive layer 5 having at least an opening portion 7 exposing the substrate 3.
摘要:
To provide a stacked photoelectric conversion device and a method for producing the same, in which an interlayer is provided between photoelectric conversion layers to obtain an effect of controlling the amount of incidence light, and carrier recombination at an interface between the interlayer and a semiconductor layer is decreased to enhance photoelectric conversion efficiency.The stacked photoelectric conversion device of the present invention comprises a plurality of silicon-based photoelectric conversion layers having a p-i-n structure stacked, wherein at least a pair of adjacent photoelectric conversion layers have an interlayer of a silicon nitride therebetween, the pair of the photoelectric conversion layers are electrically connected with each other, and a p-type silicon-based semiconductor layer constituting a part of the photoelectric conversion layer and contacting the interlayer contains a nitrogen atom.
摘要:
To provide a stacked photoelectric conversion device and a method for producing the same, in which an interlayer is provided between photoelectric conversion layers to obtain an effect of controlling the amount of incidence light, and carrier recombination at an interface between the interlayer and a semiconductor layer is decreased to enhance photoelectric conversion efficiency.The stacked photoelectric conversion device of the present invention comprises a plurality of silicon-based photoelectric conversion layers having a p-i-n structure stacked, wherein at least a pair of adjacent photoelectric conversion layers have an interlayer of a silicon nitride therebetween, the pair of the photoelectric conversion layers are electrically connected with each other, and a p-type silicon-based semiconductor layer constituting a part of the photoelectric conversion layer and contacting the interlayer contains a nitrogen atom.
摘要:
The semiconductor of the present invention has iron sulfide and a forbidden band control element contained in the iron sulfide. The forbidden band control element has a property capable of controlling the forbidden band of iron sulfide on the basis of the number density of the forbidden band control element in the iron sulfide. An n-type semiconductor is manufactured by incorporating a group IIIb element into iron sulfide. Moreover, a p-type semiconductor is manufactured by incorporating a group Ia element into iron sulfide. A semiconductor junction device or a photoelectric converter is manufactured by using the n-type semiconductor and the p-type semiconductor.
摘要:
The semiconductor of the present invention has iron sulfide and a forbidden band control element contained in the iron sulfide. The forbidden band control element has a property capable of controlling the forbidden band of iron sulfide on the basis of the number density of the forbidden band control element in the iron sulfide. An n-type semiconductor is manufactured by incorporating a group 13 element of the IUPAC system into iron sulfide. Moreover, a p-type semiconductor is manufactured by incorporating a group Ia element into iron sulfide. A semiconductor junction device or a photoelectric converter is manufactured by using the n-type semiconductor and the p-type semiconductor.
摘要:
A substrate 1 for a photoelectric conversion device includes a first transparent conductive layer 5 formed on at least a part of the surface region of a transparent substrate 3, the first transparent conductive layer 5 having at least an opening portion 7 exposing the substrate 3.