Abstract:
The invention relates to a three dimensional magnetic memory device (1) employing pure spin currents to write information into magnetic bits. The magnetic memory device (1) is formed of one or more stack of two storage layers (13) placed between two reference layers (9). The stacks are connected to each other through common reference electrodes (12) formed by connecting reference electrodes (11) placed on bottom of a first stack and on top of the second stack positioned under the first stack.
Abstract:
Read/write structures for three-dimensional memories are disclosed. In one embodiment, a three-dimensional memory includes a plurality of data storage layers fabricated in parallel on top of one another to form a three-dimensional structure. Each data storage layer is able to store bits of data in the form of magnetic domains. The memory further includes a column of write elements that is operable to write a column of magnetic domains to the first data storage layer representing a column of bits. The first data storage layer is patterned into a plurality of magnetic conductors aligned transverse to the column of write elements. A control system may inject spin-polarized current pulses in the magnetic conductors to transfer the column of magnetic domains laterally within the first data storage layer. The control system may transfer of the column of magnetic domains perpendicularly from the first data storage layer to another data storage layer.
Abstract:
The present invention relates to a data storage system and a method which has high storing capacity and high data access rate and low power consumption. The said data storage system essentially includes at least two optical layers, and which have at least one active layer in which the light is generated, at least one lower electric contact enabling the electric energy to be transferred to the active layer and at least one upper electric contact, at least two reflecting layers reflecting the light generated in the active layer; at least one thermal insulator; at least one magnetic layer, which has at least one storage bit, at least one lower buffer bit, at least one upper buffer bit enabling the data to be transferred up; at least one transparent layer and transfers the light generated by the optical unit to the magnetic layer.
Abstract:
The invention relates to a three dimensional magnetic memory device (1) employing pure spin currents to write information into magnetic bits. The magnetic memory device (1) is formed of one or more stack of two storage layers (13) placed between two reference layers (9). The stacks are connected to each other through common reference electrodes (12) formed by connecting reference electrodes (11) placed on bottom of a first stack and on top of the second stack positioned under the first stack.
Abstract:
Read/write structures for three-dimensional memories are disclosed. In one embodiment, a three-dimensional memory includes a plurality of data storage layers fabricated in parallel on top of one another to form a three-dimensional structure. Each data storage layer is able to store bits of data in the form of magnetic domains. The memory further includes a column of write elements that is operable to write a column of magnetic domains to the first data storage layer representing a column of bits. The first data storage layer is patterned into a plurality of magnetic conductors aligned transverse to the column of write elements. A control system may inject spin-polarized current pulses in the magnetic conductors to transfer the column of magnetic domains laterally within the first data storage layer. The control system may transfer of the column of magnetic domains perpendicularly from the first data storage layer to another data storage layer.
Abstract:
The present invention relates to a data storage system and a method which has high storing capacity and high data access rate and low power consumption. The said data storage system essentially includes at least two optical layers, and which have at least one active layer in which the light is generated, at least one lower electric contact enabling the electric energy to be transferred to the active layer and at least one upper electric contact, at least two reflecting layers reflecting the light generated in the active layer; at least one thermal insulator; at least one magnetic layer, which has at least one storage bit, at least one lower buffer bit, at least one upper buffer bit enabling the data to be transferred up; at least one transparent layer and transfers the light generated by the optical unit to the magnetic layer.