Diphasic Gas/Liquid Plasma Reactor
    4.
    发明申请

    公开(公告)号:US20180369778A1

    公开(公告)日:2018-12-27

    申请号:US16060605

    申请日:2016-12-09

    IPC分类号: B01J19/00 B01J19/08 B01J19/24

    摘要: The present invention relates to a microfluidic or millifluidic device (1) comprising: —a support (2) made at least partially of a dielectric material, the support (2) comprising a first inlet (21a) adapted to be connected to a first reservoir containing gas, a second inlet (21b) adapted to be connected to a second reservoir containing liquid, an outlet (22) adapted to be connected to a receiver container containing gas and/or liquid, and a main microchannel or millichannel (3) present in the dielectric material allowing the liquid and the gas to flow from the inlets towards the outlet, —one or several ground electrode(s) (4) embedded in said dielectric material and extending along the main microchannel or millichannel (3), and —one or several high-voltage electrode(s) (5) embedded fi in said dielectric material and extending along the main microchannel or millichannel (3), wherein the high-voltage electrode(s) (5) and the ground electrode(s) (4) are located on opposite sides of the main microchannel or millichannel (3) so as to be able to generate an electric field inside the main microchannel or millichannel (3). The present invention relates also to a method for generating a plasma in a continuous manner using such a microfluidic or millifluidic device (1).

    METHODS AND SYSTEMS FOR IN VIVO FULL-FIELD INTERFERENCE MICROSCOPY IMAGING

    公开(公告)号:US20210345873A1

    公开(公告)日:2021-11-11

    申请号:US17280646

    申请日:2019-09-27

    IPC分类号: A61B3/10 A61B3/13

    摘要: According to one aspect, the invention relates to a system (101) for in vivo, full-field interference microscopy imaging of a scattering three-dimensional sample. It comprises a full-field OCT imaging system (130) for providing en face images of the sample, wherein said full-field OCT system comprises an interference device (145) with an object arm (147) intended to receive the sample and a reference arm (146) comprising an optical lens (134) and a first reflection surface (133), and an acquisition device (138) configured to acquire a temporal succession of two-dimensional interferometric signals (I1, I2) resulting from interferences produced at each point of an imaging field; an OCT imaging system (110) for providing at the same times of acquisition of said two-dimensional interferometric signals, cross-sectional images of both the sample and a first reflection surface (133) of said full-field OCT imaging system (130); a processing unit (160) configured to determine a plurality of en face images (X-Y) of a plurality of slices of the sample, each en face image being determined from at least two two-dimensional interferometric signals (I1, I2) having a given phase shift; determine from the cross-sectional images provided by the OCT imaging system (110) at the times of acquisition of each of said two two-dimensional interferometric signals (I1, I2) a depth (z) for each en face image (X-Y) of said plurality of slices; determine a 3D image of the sample from said plurality of en face images of said plurality of slices of the sample and depths.