Abstract:
The present disclosure is directed to tantalum-alloy products, implantable medical devices that incorporate tantalum-alloy products such as stents or other implantable medical devices, methods of making and/or processing the tantalum-alloy products and implantable medical devices, and methods of using the implantable medical devices. In an embodiment, a stent includes a stent body having a plurality of struts. At least a portion of the stent body is made from a tantalum alloy. The tantalum alloy includes a tantalum content of about 77 weight % (“wt %”) to about 92 wt %, a niobium content of about 7 wt % to about 13 wt %, and a tungsten content of about 1 wt % to about 10 wt %. The tantalum alloy exhibits at least one mechanical property modified by heat treatment thereof, such as yield strength, ultimate tensile strength, or ductility.
Abstract:
Methods for making devices include providing a tubular member to be formed into a device, placing a removable sacrificial block material in the lumen of the tubular member and laser cutting the tubular member. A doping material can be added to the melted portion of the tubular member to promote the formation of brittle slag. A fixture can be used to hold a cut workpiece in order to ream sacrificial material from the surface of the workpiece. Pressurized gas can be supplied to the inner lumen of the tubular member to cause slag to form on the outside surface, rather than the inner surface, of the tubular member. A tubular member made from nickel-titanium alloy can be tightly adhered to a sacrificial sleeve utilizing the phase changes associated with nickel-titanium. A rotating mandrel can be placed within the lumen of the tubular member during laser cutting. A mandrel which includes an enlarged diameter section causes the workpiece to expand slightly within its elastic deformation range to dislodge islands from the workpiece. Such a mandrel could be formed from a tubular member which has a central lumen that can be used to deliver a pressurized medium to “blast” islands from the workpiece.
Abstract:
Apparatus and methods are disclosed for supporting ischemic tissue of the heart using scaffolds that may be placed within the heart percutaneously. A scaffold assembly may include a layer of biocompatible material detachably secured to a placement rod, such that the placement rod may be used to urge the layer of biocompatible material through a catheter to adjacent an area of ischemic tissue. Anchors may secure the layer of material to the myocardium. Multiple layers of biocompatible material may be placed in the ventricle separately to form the scaffold. In some embodiments, a scaffold is formed or reinforced by injecting a polymer, such as a visco-elastic foam, around an inflatable member inflated within a ventricle.
Abstract:
Embodiments are directed to radiopaque implantable structures (e.g., stents) formed of cobalt-based alloys that comprise cobalt, chromium and one or more platinum group metals, refractory metals, precious metals, or combinations thereof. Platinum group metals include platinum, palladium, ruthenium, rhodium, osmium, and iridium. Refractory metals include zirconium, niobium, rhodium, molybdenum, hafnium, tantalum, tungsten, rhenium, and precious metals include silver and gold. In one embodiment, the one or more included platinum group or refractory metals substitute at least partially for nickel, such that the alloy exhibits reduced nickel content, or is substantially nickel free. The stents exhibit improved radiopacity as compared to similar alloys including greater amounts of nickel.
Abstract:
Medical devices are manufactured from fine grained materials, processed from of a variety of metals and alloys, such as stainless steel, cobalt-chromium and nickel-titanium alloys. A fine grained metal or alloy is formed from a specimen rapidly heated to its recrystallization temperature, and then subjected to high temperature, multi-axial deformation, for example, by heavy cross-forging or swaging. The deformed specimen may be cooled and reheated to a second recrystallization temperature. The metal or alloy in the specimen is then allowed to recrystallize, such that the grain size is controlled by quenching the specimen to room temperature. A desired medical device is then configured from the fine grained material. Decreasing the average grain size of a substrate material and increasing the number of grains across a thickness of a strut or similar component of the medical device increases the strength of the device and imparts other beneficial properties into the device.
Abstract:
Medical devices are manufactured from fine grained materials, processed from of a variety of metals and alloys, such as stainless steel, cobalt-chromium and nickel-titanium alloys. A fine grained metal or alloy is formed from a specimen rapidly heated to its recrystallization temperature, and then subjected to high temperature, multi-axial deformation, for example, by heavy cross-forging or swaging. The deformed specimen may be cooled and reheated to a second recrystallization temperature. The metal or alloy in the specimen is then allowed to recrystallize, such that the grain size is controlled by quenching the specimen to room temperature. A desired medical device is then configured from the fine grained material. Decreasing the average grain size of a substrate material and increasing the number of grains across a thickness of a strut or similar component of the medical device increases the strength of the device and imparts other beneficial properties into the device.
Abstract:
A method is described including introducing a delivery device to a point within a renal artery or a renal segmental artery and delivering a treatment agent from the delivery device according to conditions that create a turbulent blood flow and wherein the treatment agent is capable of inhibiting a biological process contributing to nephropathy. In other embodiments, an apparatus and kit are described including a delivery device for insertion to a point within a renal artery or renal segmental artery and delivery of a treatment agent capable of inhibiting a biological process contributing to nephropathy.
Abstract:
A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility. Another embodiment includes a balloon expandable stent made from a radiopaque and MRI compatible alloy such as nitinol and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, hafnium, osmium, zirconium, niobium, or molybdenum.
Abstract:
A method is described including introducing a delivery device to a point within a renal artery or a renal segmental artery and delivering a treatment agent from the delivery device according to conditions that create a turbulent blood flow and wherein the treatment agent is capable of inhibiting a biological process contributing to nephropathy. In other embodiments, an apparatus and kit are described including a delivery device for insertion to a point within a renal artery or renal segmental artery and delivery of a treatment agent capable of inhibiting a biological process contributing to nephropathy.