Abstract:
The invention can be a computerized method for creating a composite media program. The method can include receiving from a first user over a network at least a first media segment, wherein the first media segment includes a first plurality of media frames. The method can also include receiving from a second user over the network at least a second media segment, wherein the second media segment includes a second plurality of media frames. Finally, the method includes automatically combining at least the first media segment and the second media segment into the composite media program including a series of media segments, wherein the composite media program is available for viewing by at least a set of members of a social network.
Abstract:
The invention can be a computerized method for creating a composite media program. The method can include receiving from a first user over a network at least a first media segment, wherein the first media segment includes a first plurality of media frames. The method can also include receiving from a second user over the network at least a second media segment, wherein the second media segment includes a second plurality of media frames. Finally, the method includes automatically combining at least the first media segment and the second media segment into the composite media program including a series of media segments, wherein the composite media program is available for viewing by at least a set of members of a social network.
Abstract:
Medical devices are manufactured from fine grained materials, processed from of a variety of metals and alloys, such as stainless steel, cobalt-chromium and nickel-titanium alloys. A fine grained metal or alloy is formed from a specimen rapidly heated to its recrystallization temperature, and then subjected to high temperature, multi-axial deformation, for example, by heavy cross-forging or swaging. The deformed specimen may be cooled and reheated to a second recrystallization temperature. The metal or alloy in the specimen is then allowed to recrystallize, such that the grain size is controlled by quenching the specimen to room temperature. A desired medical device is then configured from the fine grained material. Decreasing the average grain size of a substrate material and increasing the number of grains across a thickness of a strut or similar component of the medical device increases the strength of the device and imparts other beneficial properties into the device.
Abstract:
Thermal spray processing and cold spray processing are utilized to manufacture porous starting materials (such as tube stock, wire and substrate sheets) from biocompatible metals, metal alloys, ceramics and polymers that may be further processed into porous medical devices, such as stents. The spray processes are also used to form porous coatings on consolidated biocompatible medical devices. The porous substrates and coatings may be used as a reservoir to hold a drug or therapeutic agent for elution in the body. The spray-formed porous substrates and coatings may be functionally graded to allow direct control of drug elution without an additional polymer topcoat. The spray processes are also used to apply the drug or agent to the porous substrate or coating when drug or agent is robust enough to withstand the temperatures and velocities of the spray process with minimal degradation.
Abstract:
An implantable medical device is provided that degrades upon contact with body fluids so as to limit its residence time within the body. The device is formed of a porous corrodible metal to simultaneously provide high strength and an accelerated corrosion rate. The corrosion rate of a device formed of metal subject to self-dissolution or of a combination of metals subject to galvanic corrosion is accelerated by its porous structure. Coating the corrodible metallic device with a degradable polymer serves to delay the onset of corrosion of the underlying metallic structure.
Abstract:
The present invention includes a radiopaque stent comprising a cylindrical main body. The tubular main body comprises a cobalt chromium alloy that comprises cobalt, chromium and one or more radiopaque materials.
Abstract:
The invention relates to devices for the treatment of heart disease and particularly to endo-arterial prostheses, which are commonly called stents. More particularly, the invention relates to methods of manufacturing and coating stents utilizing thermal spray processing (TSP). In one aspect the invention involves the use of TSP for the manufacture of fine grained tubing for subsequent use as a stent or other tubular or ring-based implant, or the manufacture of intermediate sized tubing that may then be drawn to final size tubing and for the coating of a stent. An average grain size of less than 64 microns is achieved by the invention resulting in a stent having an annular wall average thickness of about eight or more grains.
Abstract:
The invention relates to devices for the treatment of heart disease and particularly to endo-arterial prostheses, which are commonly called stents. More particularly, the invention relates to methods of manufacturing and coating stents utilizing thermal spray processing (TSP). In one aspect the invention involves the use of TSP for the manufacture of fine grained tubing for subsequent use as a stent or other tubular or ring-based implant, or the manufacture of intermediate sized tubing that may then be drawn to final size tubing and for the coating of a stent. An average grain size of less than 64 microns is achieved by the invention resulting in a stent having an annular wall average thickness of about eight or more grains.