Abstract:
A fluid bed process for the manufacture of vinyl acetate from ethylene, acetic acid and oxygen comprising feeding ethylene and acetic acid into a fluid bed reactor through a first inlet, introducing the oxygen into the reactor through a second inlet, co-joining the oxygen, ethylene and acetic acid in the reactor in contact with a fluid bed catalyst to produce vinyl acetate. The particle size diameter of the particulate catalyst material has a range of 60% of the particles being below 200 microns (0.1 mm) with no more than 40% of the particles being below 40 microns (0.04 mm).
Abstract:
A fluid bed process for the manufacture of vinyl acetate from ethylene, acetic acid and oxygen comprising feeding a gaseous mixture comprising ethylene and acetic acid into a fluid bed reactor through a first inlet, introducing the oxygen into the reactor through a second inlet, co-joining the oxygen, ethylene and acetic acid in the reactor in contact with a fluid bed catalyst to produce vinyl acetate. The particle size diameter of the particulate catalyst material has a range of 60% of the particles being below 200 microns (0.1 mm) with no more than 40% of the particles being below 40 microns (0.04 mm).
Abstract:
A process of producing a fluid bed oxacylation catalyst for olefins and diolefins having the following formula Pd-M-A whereM=Au, Cd, Bi, Cu, Mn, Fe, Co, Ce, U and mixtures thereof,A=an alkali metal or mixture thereof, andM is present in the range of from 0 to 5 wt %, comprising milling a fixed bed oxacylation catalyst precursor comprising Pd-M on a fixed support with a fluid bed catalyst aqueous binder material to form a uniform aqueous slurry, drying the aqueous slurry to remove the water to form microspheroidal particles of solid fluid bed catalyst precursor, impregnating the microspheroidal particles with a solution of alkali metal salt to form the fluid bed catalyst. The catalyst is particularly useful in the manufacture of vinyl acetate from ethylene, acetic acid and oxygen.
Abstract:
A process is provided for the preparation of attrition resistant, microspheroidal fluid bed catalysts comprising the mixed oxides of vanadium and phosphorus in which a vanadium phosphorus mixed oxided catalyst precursor is densified, comminuted, formed into fluidizable particles and calcined under fluidization-type conditions. The present invention further provides the attrition resistant fluidizable catalysts prepared by the inventive process, and further provides a process for utilizing such attrition resistant catalysts in the production of maleic anhydride in the vapor phase by the oxidation of 4 carbon atom hydrocarbons.
Abstract:
Disclosed is making acetic acid by reacting in a reaction zone ethylene and molecular oxygen in the presence of a solid catalyst containing the elements and proportions indicated by the empirical formulaPd.sub.a M.sub.b TiP.sub.c O.sub.x (formula 1)whereM is selected from Cd, Au, Zn, Tl, alkali metals and alkaline earth metals,a is from 0.0005 to 0.2b is from zero to 3ac is 0.5 to 2.5, andx is a value sufficient to satisfy the valence requirements of the other elements present, andwherein such catalyst contains crystalline TiP.sub.2 O.sub.7.
Abstract translation:公开了在含有元素的固体催化剂的存在下在反应区乙烯和分子氧中反应制备乙酸,并且经验式PdaMbTiPcOx(式1)所示的比例,其中M选自Cd,Au,Zn,Tl, 碱金属和碱土金属,a为0.0005〜0.2b,为0〜3ac为0.5〜2.5,x为足以满足存在的其他元素的化合价要求的值,且该催化剂含有结晶TiP 2 O 7。
Abstract:
A process of producing a fluid bed oxacylation catalyst for olefins and diolefins having the following formula Pd--M--A where M=Au, Cd, Bi, Cu, Mn, Fe, Co, Ce, U and mixtures thereof, A=an alkali metal or mixture thereof, and M is present in the range of from 0 to 5 wt %, comprising milling a fixed bed oxacylation catalyst precursor comprising Pd--M on a fixed support with a fluid bed catalyst aqueous binder material to form a uniform aqueous slurry, drying the aqueous slurry to remove the water to form microspheroidal particles of solid fluid bed catalyst precursor, impregnating the microspheroidal particles with a solution of alkali metal salt to form the fluid bed catalyst. The catalyst is particularly useful in the manufacture of vinyl acetate from ethylene, acetic acid and oxygen.
Abstract:
Disclosed is a process for oxidizing ethane to acetic acid which comprises feeding ethane and a recycle gas to a fluidized bed reaction zone containing fluidized particulate solid oxidation catalyst, feeding a molecular oxygen-containing gas separately from said ethane to said reaction zone so that said molecular oxygen-containing gas first mixes with the major portion of the combustible hydrocarbon feed gases within the fluidized bed, said process including the steps of (1) cooling the gaseous effluent from the reaction zone, (2) separating most of the acetic acid in liquid form from the effluent gases, leaving a gaseous stream containing nearly all of the carbon oxides contained in said effluent, (3) purging a small portion of said gaseous stream and recycling most of said gaseous stream as part of the feed to said reaction zone,wherein said purging serves to prevent build-up of carbon oxides in the reaction zone, and said recycling serves to maintain a high proportion of carbon oxides in said reaction zone gases, thus aiding in moderating the temperature elevating effect of the highly exothermic oxidation reaction in said reaction zone.
Abstract:
A process for activating fluid bed catalysts useful for producing maleic anhydride from 4 carbon atom hydrocarbons is provided including contacting the fluidized catalyst containing the mixed oxides of vanadium and phosphorus with oxygen and a reducing gas at least partially combustible with oxygen at elevated temperatures sufficient to cause such combustion, wherein the molar ratio of reducing gas to oxygen is greater than the stoichiometric ratio required for complete combustion of the reducing gas. Also provided are catalysts activated by the process of the invention, as well as a process for producing maleic anhydride utilizing the catalysts thus activated.
Abstract:
A process is provided for the preparation of attrition resistant, microspheroidal fluid bed catalysts comprising the mixed oxides of vanadium and phosphorus in which a vanadium phosphorus mixed oxided catalyst precursor is densified, comminuted, formed into fluidizable particles and calcined under fluidization-type conditions. The present invention further provides the attrition resistant fluidizable catalysts prepared by the inventive process, and further provides a process for utilizing such attrition resistant catalysts in the production of maleic anhydride in the vapor phase by the oxidation of 4 carbon atom hydrocarbons.
Abstract:
The invention herein is directed toward a process for the oxydehydrogenation of ethane in fixed-bed or fluid-bed reactors at temperatures of less than about 600.degree. C. The process includes the step of contacting ethane and an oxygen-containing gas with a catalyst composition having the formula V.sub.1.0 P.sub.a O.sub.x. The catalyst can be employed in supported or unsupported form. A promoter metal can optionally be present in the catalyst.