Abstract:
In accordance with various embodiments, plates are formed via a plurality of upset-forging and forging-back cycles followed by a plurality of rolling passes.
Abstract:
A process to chemically refine and consolidate tantalum, niobium and their alloys to a fabricated product of net shape or near-net shape with higher throughput, more consistency, and lower manufacturing costs compared to prior art routes or rejuvenate damaged and deteriorated refractory metal parts. Powder metal is loaded into hoppers to be fed into laser forming/melting equipment. A suitable substrate is loaded into a laser forming/melting chamber onto which the powder will be deposited and consolidated in a point-scan process. As the powder is fed onto successive points of the surface of the substrate in linear traces, the laser is used to heat and partially melt the substrate and completely melt the powder. A combined deposition and melt beam traces the substrate surface repeatedly over a selected area to build up a dense coating of controlled microstructure in multiple layers. A fully dense deposit is built up that becomes the desired shape.
Abstract:
In various embodiments, planar sputtering targets are produced by forming a billet at least by pressing molybdenum powder in a mold and sintering the pressed powder, working the billet to form a worked billet, heat treating the worked billet, working the worked billet to form a final billet, and heat treating the final billet.
Abstract:
In accordance with various embodiments, plates are formed via a plurality of upset-forging and forging-back cycles followed by a plurality of rolling passes.
Abstract:
Molybdenum, sputtering targets and sintering characterized as having no or minimal texture banding or through thickness gradient. The molybdenum sputtering targets having a fine, uniform grain size as well as uniform texture, are high purity and can be micro-alloyed to improved performance. The sputtering targets can be round discs, square, rectangular or tubular and can be sputtered to form thin films on substrates. By using a segment-forming method, the size of the sputtering target can be up to 6 m×5.5 m. The thin films can be used in electronic components such as Thin Film Transistor-Liquid Crystal Displays, Plasma Display Panels, Organic Light Emitting Diodes, Inorganic Light Emitting Diode Displays, Field Emitting Displays, solar cells, sensors, semiconductor devices, and gate device for CMOS (complementary metal oxide semiconductor) with tunable work functions.
Abstract:
A refractory metal plate is provided. The plate has a center, a thickness, an edge, a top surface and a bottom surface, and has a crystallographic texture (as characterized by through thickness gradient, banding severity; and variation across the plate, for each of the texture components 100//ND and 111//ND, which is substantially uniform throughout the plate.
Abstract:
Computer-implemented processes for making refractory metal pots, including: cutting an a refractory metal ingot into a first workpiece; subjecting the first workpiece to multiple upset forgings, annealings in a vacuum or inert gas to a temperature sufficiently high to cause at least partial recrystallization, forging-backs, and rollings to form a plate; wherein the forged, annealed workpiece undergoes a reduction in thickness after at least one rolling pass and is turned between at least one pass, to form the plate; and deep drawing the plate to form a pot; wherein dimensions of at least one workpiece or plate suitable for processing into a pot are pre-determined with a computer-implemented finite element modeling assessment method.
Abstract:
Refractory metal products, such as tantalum, can be rejuvenated after metal consumption in selected zones by filling the zones with powder and simultaneously applying focused radiant energy to the powder.
Abstract:
A forging press includes a die set having a stationary die, a movable die in facing-but-spaced-apart relation to the stationary die along a press axis and defining a workpiece volume therebetween, and an exterior constraint extending circumferentially around the workpiece volume. The movable die has a base level region lying generally in a workpiece plane perpendicular to the press axis, and three rotationally symmetric segments raised above the base level region. Each of the segments forms an angular segment of a disk having an included segment angle and that is angularly separated from the other segments. A press mechanism includes a axial drive operable to move the movable die in a direction parallel to the press axis, and an indexing drive operable to rotate the movable die about the press axis by an indexing rotational angle. In operation, the axial drive performs a press stroke and retracts, the indexing drive rotates the movable die by the indexing rotational angle of less than the included segment angle, and the axial drive performs another press stroke. By repeating these steps, the entire workpiece is forged incrementally.
Abstract:
A refractory metal plate is provided. The plate has a center, a thickness, an edge, a top surface and a bottom surface, and has a crystallographic texture (as characterized by through thickness gradient, banding severity; and variation across the plate, for each of the texture components 100//ND and 111//ND, which is substantially uniform throughout the plate.