摘要:
There is described a method for non-invasively measuring electrical activity in a joint of a subject, the method comprising: removably attaching in a non-invasive manner at least two electrodes to a skin surface around an articulation comprising the joint; generating electroarthrographic potentials within the joint by loading the articulation; capturing the electroarthrographic potentials using the at least two electrodes; discriminating between electroarthrographic potentials originating from joint tissue activity and those from other sources; and generating measurement signals representing the electrical activity of joint tissue.
摘要:
The present invention relates to a medical apparatus for the early detection and the diagnosis of cartilage degeneration and a method for using such apparatus. The apparatus comprises at least two point electrodes, a signal processor located in proximity of the electrodes, a defined abutment in recess of the electrodes for allowing compression of the cartilage against the electrodes until the cartilage abuts against the abutment surface and a computer program for analyzing and interpreting the data received from the electrodes. The medical apparatus may be used in research to identify effects of new compounds or drugs on the cartilage or may be used in clinics to monitor the degradation of cartilage of a patient over an extended period of time.
摘要:
An in vitro process of preparing virus-like particles (VLPs) from recombinant papaya mosaic virus coat protein and ssRNA, which allows for large scale production of VLPs in high yields, is provided. Also provided are VLPs comprising ssRNA prepared by the in vitro process. The VLPs can be used as adjuvants and when fused to an antigen, as vaccines. The use of the VLPs for stimulation of the innate immune response is also provided.
摘要:
An in vitro process of preparing virus-like particles (VLPs) from recombinant papaya mosaic virus coat protein and ssRNA, which allows for large scale production of VLPs in high yields, is provided. Also provided are VLPs comprising ssRNA prepared by the in vitro process. The VLPs can be used as adjuvants and when fused to an antigen, as vaccines. The use of the VLPs for stimulation of the innate immune response is also provided.
摘要:
There is described a method for non-invasively measuring electrical activity in a joint of a subject, the method comprising: removably attaching in a non-invasive manner at least two electrodes to a skin surface around an articulation comprising the joint; generating electroarthrographic potentials within the joint by loading the articulation; capturing the electroarthrographic potentials using the at least two electrodes; discriminating between electroarthrographic potentials originating from joint tissue activity and those from other sources; and generating measurement signals representing the electrical activity of joint tissue.
摘要:
Body surface potential map (BSPM) pace-mapping is a system and method that can be used in medicine to localize with precision the site of origin of abnormal cardiac electrical activity and to guide the positioning of a catheter over this site of origin, such as the site of ventricular preexcitation in patients with the Wolff-Parkinson-White syndrome or the focus of ectopic activity in patients with tachycardia. Body surface potential distributions are measured with a large number of electrodes, e.g. 24 to 128, distributed over the entire torso surface. The electrical signals are first amplified, converted into digital data and treated to remove electrical or muscle artifacts. Data recorded during abnormal activation (reference beat) are aligned with data recorded during cardiac pacing (paced beat) so as to maximize the average value of the correlation coefficient between the reference and the paced potential distributions during a preset time interval following the beginning of the QRS complex. Reference and paced maps showing color-coded isopotential contour lines are displayed side by side for the same time instant. Visual analysis of these maps according to previously published criteria determines the relative position of the pacing catheter with respect to the focus of abnormal activation, and gives information so as to guide the catheter toward the focus.
摘要:
An electrode balloon for use in anatomical cavities, such as cardiac chambers, to pick up bioelectrical signals from the walls thereof simultaneously in a multitude of sites for the mapping of the activation potentials thereof comprises an inflated tight rubber balloon having an opening at a proximal end thereof communicating with a filling tube which defines apertures for dispensing fluid in the rubber balloon. An extensible knitting which covers the rubber balloon is provided with a plurality of electrode heads distributed thereon to contact the walls of the cavity when the rubber balloon is inflated by a fluid conveyed therein through the tube. Insulated electrical conductors connect the electrodes to a signal recording and processing device. A tutor extending longitudinally through the rubber balloon and further extending therefrom to form a handle includes two separate longitudinal compartments which constitute the filling tube and a compartment for receiving an intubation guide which serves to guide the knitting covered rubber balloon into the cavity. The electrodes are hollow balls sewn to the knitting and joined to the conducting wires with weldless joints. The knitting is patterned in order to confer to the inflated rubber balloon the shape of the cavity being studied. The electrode balloon is adapted, for instance, to study the left and right ventricles by way of its the insertion through an incision in their respective auricles and through the mitral and tricuspid valves thereof, respectively.