摘要:
A method and engine arrangement are provided for monitoring components in an exhaust aftertreatment system (EATS) including a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction catalyst (SCR). A first 02 level is measured at a first location between the DOC and the DPF, a second 02 level is measured at a second location downstream of the SCR, a first NOx level is measured at. the first location, a second NOx level is measured at the second location, SCR efficiency is calculated based on the first and second NOx levels, and whether the DOC, the DPP. and the SCR are functioning property is determined based on whether the first 02 level is within a first 0:2 target, whether the second 02 level is within a second 02 target, and whether SCR efficiency is within an SCR efficiency target.
摘要:
Components in an exhaust after treatment system (EATS) for a diesel engine are monitored by measuring heat released (QDOC) across a diesel oxidation catalyst (DOC) and heat released (QEATS) across the DOC and a diesel particulate filter (DPF) during an A Hi injection event, by calculating heat input from AHI fuel (QAHI) during performance of the AH I injection event with a fully functioning AHI nozzle, and by measuring NOX conversion efficiency (nSCR) from NOX to N2 by a selective catalytic reduction system (SCR) at a condition where a SCR is sensitive to feeding gas compositions while AHI is not in use. Malfunctioning components are identified using these measurements and calculations.
摘要:
A method is provided for detecting abnormally frequent diesel particulate filter (DPF) regeneration. The method includes measuring a pressure drop across the DPF and using the measured pressure drop to calculate a pressure drop based soot load estimate, calculating soot output from an engine model and using the calculated soot output to calculate an emissions based soot load estimate, comparing the pressure drop based soot load estimate with the emissions based soot load estimate, and providing a warning if a difference between the pressure drop based soot load estimate and the emissions based soot load estimate exceeds a predetermined
摘要:
A method and engine arrangement are provided for monitoring components in an exhaust aftertreatment system (EATS) including a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction catalyst (SCR). A first O2 level is measured at a first location between the DOC and the DPF, a second O2 level is measured at a second location downstream of the SCR, a first NOx level is measured at, the first location, a second NOx level is measured at the second location, SCR efficiency is calculated based on the first and second NOx levels, and whether the DOC, the DPP. and the SCR are functioning property is determined based on whether the first O2 level is within a first O:2 target, whether the second O2 level is within a second O2 target, and whether SCR efficiency is within an SCR efficiency target.
摘要:
A method is provided for detecting abnormally frequent diesel particulate filter (DPF) regeneration. The method includes measuring a pressure drop across the DPF and using the measured pressure drop to calculate a pressure drop based soot load estimate, calculating soot output from an engine model and using the calculated soot output to calculate an emissions based soot load estimate, comparing the pressure drop based soot load estimate with the emissions based soot load estimate, and providing a warning if a difference between the pressure drop based soot load estimate and the emissions based soot load estimate exceeds a predetermined.
摘要:
A method for operating an exhaust aftertreatment system injector to prevent coking includes steps of injecting fuel for heating the aftertreatment devices, when not injecting fuel, flowing air to purge and cool the nozzle to prevent carbon deposits when exhaust gas temperature is low, and substantially stop air flow to allow passive heating of the nozzle by the exhaust for oxidation of any accumulated carbon when exhaust temperature is high enough to support oxidation. Preferably, the nozzle has a catalytic material coating to reduce the temperature necessary for oxidation of the coking material.
摘要:
Components in an exhaust after treatment system (EATS) for a diesel engine are monitored by measuring heat released (QDOC) across a diesel oxidation catalyst (DOC) and heat released (QEATS) across the DOC and a diesel particulate filter (DPF) during an A Hi injection event, by calculating heat input from AHI fuel (QAHI) during performance of the AH I injection event with a fully functioning AHI nozzle, and by measuring NOX conversion efficiency (nSCR) from NOX to N2 by a selective catalytic reduction system (SCR) at a condition where a SCR is sensitive to feeding gas compositions while AHI is not in use. Malfunctioning components are identified using these measurements and calculations.