Abstract:
A solution with a salt-sensitive polymer binder for use in fibrous webs, where the binder contains a copolymer comprising repeat units derived from butyl acrylate, methyl methacrylate and amino functionalized alkyl acrylate or methacrylate or amino functionalized alkyl acrylamide or methacrylamide optionally including monomers such as vinyl acetate and/or vinyl acetate/ethylene. The binder solution is prepared by emulsion-polymerizing a copolymer and then neutralizing the copolymer with acid to make it water soluble. The binders are particularly suitable for strengthening nonwoven fibrous webs in disposable articles such as wet-wipes, personal care products, diapers, and the like and retain their salt-sensitivity with or without divalent metal scavengers.
Abstract:
A solution with a salt-sensitive polymer binder for use in fibrous webs, where the binder contains a copolymer of carboxylic acid monomer units and ethylenically unsaturated monomer units. The binder solution is prepared by emulsion-polymerizing a copolymer and then neutralizing the copolymer with base to make it water soluble. The binders provide a higher wet strength in concentrated salt solutions than in deionized water, and are particularly suitable for strengthening nonwoven fibrous webs in disposable articles such as wet-wipes, personal care products, diapers, and the like.
Abstract:
A solution with a salt-sensitive polymer binder for use in fibrous webs, where the binder contains a copolymer of carboxylic acid monomer units and ethylenically unsaturated monomer units including vinyl acetate. The binder solution is prepared by emulsion-polymerizing a copolymer and then neutralizing the copolymer with base to make it water soluble. The binders provide a higher wet strength in concentrated salt solutions than in deionized water, and are particularly suitable for strengthening nonwoven fibrous webs in disposable articles such as wet-wipes, personal care products, diapers, and the like.
Abstract:
A binder composition for fibrous substrates that includes a low-pressure polymerized emulsion resin comprising vinyl acetate monomer units and post-crosslinking monomer composition. The inventive compositions enable fibrous substrates with high tensile strengths and excellent curability, and are particularly useful as binders in synthetic fiberfill applications.
Abstract:
A non-aqueous—organic-solvent-free coating composition having increased block resistance comprising an acrylic modified ethylene-vinyl acetate (EVA) polymer blend, wherein the acrylic polymer is prepared by emulsion polymerizing at least one ethylenically unsaturated non-carboxy functional monomer, from 0.01 to 2 pphm of a sterically hindered alkoxylated silane monomer, and at least one anionic surfactant, and the ethylene-vinyl acetate polymer is prepared by emulsion polymerizing ethylene and vinyl acetate.
Abstract:
Selective hydrogenation of the carbon-carbon double bonds of conjugated diene copolymers is effective homogeneous solution in an organic solvent in the presence of certain divalent ruthenium carbonyl complex catalysts. The ruthenium catalysts have the general formula:Ru(CO)HA(Z).sub.3 (1)wherein A is a halogen atom, most preferably chlorine, or a hydrogen atom and Z is --PR.sub.1 R.sub.2 R.sub.3 in which R.sub.1, R.sub.2 and R.sub.3 are the same or different and are selected from alkyl and aryl groups, preferably all the phenyl group, or have the general formula:Ru(CO)XY(Z).sub.2 (2)wherein X is a carboxylate group, particularly ClCH.sub.2 COO--, Cl.sub.2 CHCOO--, Cl.sub.3 CCOO--, F.sub.3 CCOO--, CH.sub.3 COO--, C.sub.6 H.sub.5 COO-- or p--ClC.sub.6 H.sub.4 COO--, Y is a halogen atom, preferably a chlorine atom or a bromine atom, or a hydrogen atom or a carboxylate group, Z is as defined above; or have the general formula:Ru T(CO)(NO)(Z).sub.2 (3)wherein T is a halogen atom, preferably a chlorine or bromine atom, and Z is as defined above; or have the general formula:Ru T(NO)(Z).sub.2 (4)wherein T and Z are as defined above; or have the general formula:Ru H(NO)(Z).sub.3 (5)wherein Z is as defined above; or have the general formula:Ru (NO).sub.2 (Z).sub.2 (6)wherein Z is as defined above.
Abstract:
A water-based, low-emission latex paint formulation includes a vinyl acetate/ethylene (VAE) latex including a VAE resin with from 80 to 95 weight % vinyl acetate residue and from 5 to 20 weight % ethylene residue, optionally including additional monomers as well as a pigment composition including inorganic solids selected from inorganic pigments, inorganic fillers and mixtures thereof present in an amount such that the paint formulation has a pigment volume concentration (PVC) of from 25% to 85%. The formulations are suitable for eggshell and flat latex paints and exhibit surprising durability.
Abstract:
Disclosed are improved carpet products made using certain types of coating compositions to secure carpet fibers to a carpet backing or substrates and/or to secure one or more carpet scrims or other layers to carpet backing. The coating compositions, which can be in the form of either precoating or skip coating compositions, are made from latex binder emulsions based on interpolymers emulsion polymerized from vinyl esters, ethylene, and a multifunctional cross-linking co-monomer such as an unsaturated silane. Such emulsions are also stabilized with surfactant emulsifiers but are substantially free of protective colloid stabilizers. The multifunctional co-monomer alters interpolymer molecular weight, branching and/or flow properties such that films formed from such interpolymers exhibit relatively low elongation values. When the emulsion binder exhibits such non-elongating film-forming characteristics, the carpet coating composition made from such binders can be easily processed without build-up on carpet processing apparatus. Such binder emulsions which are stabilized substantially only with surfactant emulsifiers, and not with protective colloids, also have excellent compatibility with other coating composition components.
Abstract:
Disclosed herein are nonwoven fibrous structures for use as body fluid acquisition/distribution elements in personal care products. Such structures comprise natural and/or synthetic fibers wherein the fibers have been consolidated by application thereto, and by cross-linking of, a certain type of cross-linkable, vinyl acetate-ethylene (VAE) emulsion copolymer latex binder. The VAE latex binder is one which also comprises an added organic acidulant such as citric acid. Consolidation of the structures with VAE-based binders to which the organic acidulant has been added imparts to the resulting structures the ability to lower the pH of body fluids such as urine passing through the structures. This effect, in turn, provides odor control and skin care benefits to the absorbent articles, e.g., diapers and adult incontinence products, using such structures as acquisition/distribution elements.
Abstract:
A solution with a salt-sensitive polymer binder for use in fibrous webs, where the binder contains a copolymer of carboxylic acid monomer units and ethylenically unsaturated monomer units. The binder solution is prepared by emulsion-polymerizing a copolymer and then neutralizing the copolymer with base to make it water soluble. The binders provide a higher wet strength in concentrated salt solutions than in deionized water, and are particularly suitable for strengthening nonwoven fibrous webs in disposable articles such as wet-wipes, personal care products, diapers, and the like.