Abstract:
The invention includes a catheter having an elongate main body having a proximal section and a distal section. The elongate main body further includes a plurality of stiffening members disposed along the length of the elongate main body. The plurality of stiffening members includes a first stiffening member and a second stiffening member. The catheter can also include a balloon formed from a tubular member having a recess defined in a portion of its surface. A tapered or thinned balloon is formed from a process by which material is removed from a tubular member prior to formation of the balloon.
Abstract:
A crack-resistant endoprosthesis for delivery in a body lumen can be comprised of a multilayered material. The multilayered material can include at least two layers having a boundary layer therebetween. The boundary layer is configured to inhibit cracks from propagating from a first layer-to a second layer. The different layers can be comprised of the same materials or different materials. It can be preferred that the multilayered material have layers that are comprised of resiliently-flexible materials, shape memory materials, and/or radiopaque materials.
Abstract:
The present invention provides a stent comprising a tubular flexible body having a wall with a web structure that is expandable from a contracted delivery configuration to deployed configuration. The web structure comprises a plurality of neighboring, interconnected, web patterns, each web pattern composed of adjoining webs. Each adjoining web comprises a central section interposed between two lateral sections, forming concave or convex configurations. Embodiments of the present invention comprising curvature for tracking tortuous anatomy and reducing localized restoring forces are provided. Methods of using stents in accordance with the present invention are also provided.
Abstract:
A device for reshaping a cardiac valve (26), which is elongate and has such dimensions as to be insertable into a cardiac vessel (24). The device has two states, in a first state (K) of which the device has a shape that is adaptable to the shape of the vessel (24), and to the second state (k′) of which the device is transferable from said first state (K). Further, the device comprises a fixing means (22,23;22a,23a) for fixing the ends of the device within the vessel (24), when the device is first positioned therein, a shape-changing member (20;20a) for transferring the device to the second state (K′) by reshaping it, and a delay means (21;21a) for delaying said reshaping until the fixing of the ends of the device has been reinforced by keeping said device in said first state (K) until the delay means (21;21a) is resorbed.
Abstract:
An endoprosthesis for delivery in a body lumen can be configured to inhibit crack formation and/or crack propagation, and/or fatigue-induced catastrophic failure by the use of holes extending through an endoprosthetic element. As such, the endoprosthesis can include at least one strut element having a strut width and a strut thickness, the strut thickness being defined by a first side opposite a second side. The element can be characterized by having a plurality of holes extending from the first side to the second side. The plurality of holes can be arranged in an amount, distribution, and/or pattern so as to inhibit crack propagation across the strut length or strut width.
Abstract:
A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
Abstract:
A stent delivery system is disclosed for delivering and deploying a radially expandable stent at a strategic orientation and location in a body vessel. The delivery system includes an elongated flexible tubular shaft sized suitably for insertion into the body vessel. A stent deployment assembly includes a distal transition portion supporting a dilator device adapted for radial expansion about a longitudinal axis of the deployment assembly from a non-expanded condition to a radially expanded condition. The dilator device is configured to support the stent thereon in the non-expanded condition and in predetermined orientation relative the deployment assembly. A rotational clutch assembly rotatably mounts the transition portion to a distal portion of the tubular shaft such that the deployment assembly is substantially torsionally isolated from the tubular shaft, about a longitudinal axis of the clutch assembly. This enables the stent deployment assembly to rotate substantially independently of the tubular shaft for strategic orientation of the dilator device during advancement through the body vessel.
Abstract:
A device for treatment of mitral annulus dilation is disclosed, wherein the device comprises two states. In a first of these states the device is insertable into the coronary sinus and has a shape of the coronary sinus. When positioned in the coronary sinus, the device is transferable to the second state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus and the radius of curvature as well as the circumference of the mitral annulus is reduced.
Abstract:
Disclosed are stent delivery apparatus and methods for moving a balloon catheter carrying a stent through a body vessel without the stent slipping from the balloon are provided. In general, the stent delivery system includes a stent stopper that impedes the stent from slipping from the balloon. The stent stopper is sized to serve as a barrier to the stent as it is carried on the balloon. In a specific embodiment, the stent stopper is formed from a material that encircles the proximal end of the balloon and abuts the proximal end of the stent. The stent stopper material expands with expansion of the balloon and collapses with deflation of the balloon. In some embodiments, the stent stopper material has a thickness that is about equal to or greater than the thickness of the stent so as to form a barrier against the stent and impede the stent from slipping off the proximal end of the balloon.
Abstract:
Disclosed is a method for delivery of at least one therapeutic agent from an angioplasty balloon for treating vascular disease at a bifurcated vessel. The invention also relates to the method of loading the beneficial agents onto the balloon and the device, as well as the method of delivery of the agents from separate surfaces. The invention also relates to a method of loading multiple beneficial agents onto the balloon surfaces