摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by a method whereby an aerosolized insulin formulation is delivered to a patient's lungs and the rate at which the insulin is absorbed into the blood is increased by the use of an inhale-exhale breathing maneuver. Particles of insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The rate of absorption is enhanced by instructing the patient to inhale maximally and thereafter exhale maximally. This maneuver causes a spike in the rate at which insulin enters the circulatory system thereby increasing the rate at which glucose is removed from the circulatory system. The insulinmay be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release. The sensor can also assist the patient in the inhale-exhale maneuver.
摘要:
A disposable package, tape, and cassette are provided which makes it possible to hold and disperse therefrom liquid, flowable formulations including aqueous formulations (solutions or dispersions with particles less than 0.25 microns in diameter) of a pharmaceutically active drug. In one embodiment formulation is packaged in individual dosage unit containers which containers are preferably interconnected. The package is designed to be integrated into a cassette which can be loaded into a dispersing device capable of individually opening dosage unit containers and aerosolizing the contents through a porous membrane, into a mouth piece on the cassette, for delivery to a patient. In addition to and alongside of each porous membrane, the package may include one or more openings through which air is forced in order to aid in avoiding the accumulation of aerosolized particles. The package may be configured so that the formulation is held in a container not positioned directly vertical to and below the porous membrane, thus making it necessary to channel formulation horizontally to the porous membrane and making it possible to include a vibrating mechanism directly below a chamber covered by the porous membrane. Release of aerosolized drug is breath actuated based on simultaneous measurements of inspiratory flow and volume so as to provide for repeatable dosing of drug to the patient.
摘要:
A method of treating human patients is provided by the intrapulmonary delivery of a formulation containing a hematopoietic drug. The formulation is automatically released in an aerosolized form from a hand-held, self-contained, portable device comprised of a means for automatically releasing a measured amount of drug into the inspiratory flow path of a patient in response to information obtained from a means for measuring the inspiratory flow rate and determining the inspiratory volume of a patient. Reproducible dosing is obtained by providing for automatic release at the same inspiratory flow rate and inspiratory volume each time drug is released. The device includes a timer to enable a patient to take a drug at the same time each day. Further, overadministration of a hematopoietic drug formulation is avoided by providing a pre-programmed microprocessor designed to avoid overdosing.
摘要:
Dosages of inhaled insulin are controlled within a narrow range by controlling the total volume of air inhaled by a patient. By repeatedly delivering aerosolized insulin with the same total inhaled volume of air, the amount of insulin delivered to the patient each time is consistent. A device for delivering insulin by inhalation is disclosed which device comprises a means for measuring inhaled volume and for halting inhalation at a pre-determined point. The device also comprises an adjustable means for applying various amounts of force to a container of formulation to expel different amounts of drug from the container based on the force applied.
摘要:
A disposable package, tape, and cassette are provided which makes it possible to hold and disperse therefrom liquid, flowable formulations including aqueous formulations (solutions or dispersions with particles less than 0.25 microns in diameter) of a pharmaceutically active drug. In one embodiment formulation is packaged in individual dosage unit containers which containers are preferably interconnected. The package is designed to be integrated into a cassette which can be loaded into a dispersing device capable of individually opening dosage unit containers and aerosolizing the contents through a porous membrane, into a mouth piece on the cassette, for delivery to a patient. In addition to and alongside of each porous membrane, the package may include one or more openings through which air is forced in order to aid in avoiding the accumulation of aerosolized particles. The package may be configured so that the formulation is held in a container not positioned directly vertical to and below the porous membrane, thus making it necessary to channel formulation horizontally to the porous membrane and making it possible to include a vibrating mechanism directly below a chamber covered by the porous membrane. Release of aerosolized drug is breath actuated based on simultaneous measurements of inspiratory flow and volume so as to provide for repeatable dosing of drug to the patient.
摘要:
A method of treating patients suffering from a respiratory disease using a programmable, hand-held, self-contained drug dispensing device is disclosed. A patient's inspiratory flow rate is measured and a determination is made of a typical and preferred rate and volume for the release of respiratory drug. To obtain repeatability in dosing the drug is repeatedly released at the same rate and volume. To maximize the amount of drug delivered based on the amount released the drug is released at a rate of from about 0.10 to about 2.0 liters/second and (2) a volume of about 0.15 to about 0.8 liters. Parameters such as rate, volume, and particle size of the aerosolized formulation are adjusted to obtain repeatable dosing of the maximum amount of drug to the desired area of the lung. Lung function is measured and use parameters are adjusted in order to improve lung function.
摘要:
Apparatus and methods for delivering an amount of aerosolized medicine for inspiration by a patient in response to the occurrence of appropriate delivery point or points in the patient's detected breath flow. The aerosol medication may be administered as one or more pulses having a pulse width, shape, and frequency that will maximize the respirable fraction of the aerosolized compound being administered. The delivery point or points may be predetermined or determined from a prior inspiratory flow for depositing the selected medication at one or more desired locations in the patient's airway. Determined delivery points are recursively lowered for each inspiratory flow that does not satisfy one of the predetermined and previously lowered threshold. Changes in the patient's breath flow patterns during the course of an aerosolized medication inspiration therapy program may be detected and used to adjust the controlled amount of medication to be delivered in a given administration and/or to inform the patient of the patient's condition or change in condition. The device also may contain a library of administration protocols or operating parameters for different medications and a means for identifying from the canister the medicinal contents of the canister for customizing operation of the apparatus.
摘要:
A method for treating a patient suffering from diabetes mellitus by delivering aerosolized insulin to the patient and a programmed, portable, hand-held device used in such treatment methodology is disclosed. Two basic types of drug delivery devices are disclosed for use in connection with the present invention. In accordance with the first type of device the insulin is contained within a low boiling point propellant which is held within a canister under pressure. In accordance with the second type of device the insulin is present within a container in solution and the solution is moved through a porous membrane to create an aerosolized formulation which is inhaled by the patient. In accordance with both devices a measured amount of insulin containing formulation is automatically released into the inspiratory flow path of a patient in response to information obtained from determining the inspiratory flow rate and inspiratory volume of a patient. The determination of values and release of drugs are carried out in real time. Reproducibly dosing of insulin to the patient is obtained by repeatedly providing for automatic release of insulin formulation at the same inspiratory flow rate and inspiratory volume. To maximize the efficiency of the delivery of the insulin formulation the formulation is released at an inspiratory flow rate in the range of from about 0.1 to about 2.0 liters/second and a measured inspiratory volume in the range of about 0.1 to about 0.8 liters.