Abstract:
The invention provides a method of diagnosing entry of gastrointestinal contents into the respiratory tract of a patient suffering from reflux disease. The method comprises orally administering to a subject formulation comprising a detectable label that is not absorbed from the gastrointestinal tract but can be absorbed from the respiratory tract. The extent of the gastrointestinal contents entering the respiratory tract can be estimated by measuring the level of the detectable label in a body fluid, e.g., blood or urine.
Abstract:
The invention relates generally to a system and method for treating conditions responsive to nicotine therapy. More specifically, the invention relates to pulmonary administration of a nicotine containing formulation to effect smoking cessation.
Abstract:
The invention is directed to a transdermal drug delivery composition which includes at least one physiologically active agent; and at least one volatile solvent; and at least one viscosity modulating agent. The invention extends to methods of administering such a composition to a subject and treatment of subjects using the composition.
Abstract:
The invention relates generally to a system and method for treating conditions responsive to nicotine therapy. More specifically, the invention relates to pulmonary administration of a nicotine containing formulation to effect smoking cessation.
Abstract:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
Abstract:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
Abstract:
A method for producing a nozzle useful in generating a fine aerosol for delivery of therapeutic or diagnostic agents is provided. The method comprises focusing a laser source onto a thin, preferably flexible material so as to form pores substantially through the material. The pores are formed to have an unflexed exit aperture diameter in the range of about 0.5 to about 25 microns, depending on the size of the aerosol particles desired for a particular application. The nozzle may have a variety of shapes and be distributed in a variety of patterns. An elevated area can be formed around the exit aperture of the nozzle in order to prevent intrusion of liquid into the nozzle.
Abstract:
The present invention relates to the use of calcium ion and/or sugars to minimize thermal aggregation of DNase and to the use of calcium ion to stabilize liquid solutions of DNase, the solutions having a pH of less than neutral. DNase is the active pharmaceutical principle and the solutions may contain other pharmaceutically acceptable excipients making them suitable for pharmaceutical administration. In the first instance, calcium ion/sugar minimizes the effects of thermal aggregation in the solution. In the second aspect, calcium ion stabilizes the lower pH solutions from protein precipitation.
Abstract:
Dosages of inhaled insulin are controlled within a narrow range by controlling the total volume of air inhaled by a patient. By repeatedly delivering aerosolized insulin with the same total inhaled volume of air, the amount of insulin delivered to the patient each time is consistent. A device for delivering insulin by inhalation is disclosed which device comprises a means for measuring inhaled volume and for halting inhalation at a pre-determined point. The device also comprises an adjustable means for applying various amounts of force to a container of formulation to expel different amounts of drug from the container based on the force applied.
Abstract:
A method for collecting an aerosolized therapeutic polypeptide of interest, such as recombinant human deoxyribonuclease I (rhDNase), is provided which enables a determination as to the effect aerosolization has on the activity and integrity of the polypeptide. An aerosol of the polypeptide is generated using a nebulizer, for example, and the polypeptide is collected in an inert filter, such as a sintered glass filter. To increase the amount of polypeptide collected, the aerosol is preferably mixed with pre-humidified dilution air at a temperature between about 40.degree. and 55.degree. C. The collected polypeptide is subjected to biochemical activity and integrity analysis compared to the activity and integrity of the control polypeptide which has not been aerosolized.