Gas-liquid reaction process including ejector and monolith catalyst
    3.
    发明授权
    Gas-liquid reaction process including ejector and monolith catalyst 有权
    气 - 液反应过程包括喷射器和整体催化剂

    公开(公告)号:US06506361B1

    公开(公告)日:2003-01-14

    申请号:US09573726

    申请日:2000-05-18

    Abstract: This invention relates to process for carrying out gas-liquid reactions such as those employed in the hydrogenation or oxidation of organic compounds. In the catalytic reaction of a liquid reactant and a gaseous reactant to form a product, the improvement which comprises: pressurizing a liquid reactant and, then, introducing the resultant pressurized liquid reactant to a liquid motive gas ejector wherein it is mixed with the gaseous reactant. The mixture is passed to and reacted in a monolith catalytic reactor. The products are removed from the monolith catalytic reactor at a reduced pressure and, then introduced to a tank. The unreacted materials in the reaction product then are recirculated back to the ejector.

    Abstract translation: 本发明涉及进行气 - 液反应的方法,例如在有机化合物的氢化或氧化中使用的那些。 在液体反应物和气体反应物的催化反应中形成产物的改进包括:对液体反应物加压,然后将所得的加压液体反应物引入到液体运动气体喷射器中,其中与气体反应物 。 将混合物送入并在整体式催化反应器中反应。 将产物在减压下从整体催化反应器中除去,然后引入罐中。 然后将反应产物中的未反应物质再循环回喷射器。

    Method and apparatus for achieving maximum yield in the electrolytic preparation of group IV and V hydrides
    5.
    发明授权
    Method and apparatus for achieving maximum yield in the electrolytic preparation of group IV and V hydrides 有权
    在IV族和V型氢化物的电解制备中获得最大产率的方法和装置

    公开(公告)号:US08591720B2

    公开(公告)日:2013-11-26

    申请号:US13208418

    申请日:2011-08-12

    CPC classification number: C25B1/00 C23C16/4488 C25B15/08

    Abstract: A method for generating hydride gas of metal M1 in electrochemical cell comprising cathode comprising metal M1, sacrificial anode comprising metal M2, an initial concentration of aqueous electrolyte solution comprising metal hydroxide M3OH, wherein the sacrificial metal anode electrochemically oxidizes in the presence of the aqueous electrolyte solution to form metal salt, and hydride gas of metal M1 is formed by reducing the metal M1 of the cathode. The method also comprises steps of determining solubility profile curves of metal salt as M3OH is consumed and metal oxide is formed by oxidation reaction at various concentrations of M3OH; determining the maximum concentration of M3OH that does not yield a concentration of metal salt that precipitates out of the electrolyte solution; and choosing a concentration of M3OH that is in the range of at and within 5% less than the maximum concentration of M3OH to be the initial concentration of M3OH.

    Abstract translation: 一种用于在电化学电池中产生金属M1的氢化物气体的方法,其包括含有金属M1的阴极,包含金属M2的牺牲阳极,包含金属氢氧化物M3OH的初始浓度的电解质水溶液,其中所述牺牲金属阳极在水性电解质存在下电化学氧化 溶液形成金属盐,通过还原金属M1形成金属M1的氢化物气体。 该方法还包括以下步骤:测定在M3OH被消耗的金属盐的溶解度曲线曲线,并且通过在不同浓度的M3OH下的氧化反应形成金属氧化物; 确定不产生从电解液中析出的金属盐浓度的M3OH的最大浓度; 并选择在M3OH的最大浓度以下且小于5%的范围内的M3OH浓度成为M3OH的初始浓度。

    Electrodes for Electrolytic Germane Process
    8.
    发明申请
    Electrodes for Electrolytic Germane Process 有权
    电解锗工艺电极

    公开(公告)号:US20120055803A1

    公开(公告)日:2012-03-08

    申请号:US12874503

    申请日:2010-09-02

    CPC classification number: C25B1/00 C25B9/08 Y02E60/366

    Abstract: The invention relates to the electrolysis of aqueous electrolyte solutions containing GeO2; hydroxide and water with metal alloy electrodes, such as, copper or tin rich alloy electrodes with alloying elements such as Sn, Pb, Zn, Cu etc, to generate Germane (GeH4). Cu-rich alloy electrodes have been demonstrated to increase the GeH4 current efficiency by almost 20% compared to Cu metal electrodes. Germanium deposition has been found to be either absent or minimal by using Cu-rich alloy electrodes. Several different methods for maintaining the cell performance or restoring the cell performance after a reduction in current efficiency over time, have been identified. A titration-based method for the analysis of the electrolyte, to obtain the concentration of GeO2 and the concentration of hydroxide has also been disclosed.

    Abstract translation: 本发明涉及含有GeO 2的电解质水溶液的电解; 氢氧化物和水与金属合金电极,例如具有合金元素如Sn,Pb,Zn,Cu等的铜或锡丰富的合金电极,以产生锗(GeH 4)。 与Cu金属电极相比,已证明富Cu合金电极将GeH4电流效率提高近20%。 通过使用富Cu合金电极,发现锗沉积不存在或不存在。 已经确定了用于在电流效率随时间降低的情况下维持电池性能或恢复电池性能的几种不同的方法。 还公开了用于分析电解质,获得GeO 2浓度和氢氧化物浓度的基于滴定的方法。

    DIVIDED ELECTROCHEMICAL CELL AND LOW COST HIGH PURITY HYDRIDE GAS PRODUCTION PROCESS
    9.
    发明申请
    DIVIDED ELECTROCHEMICAL CELL AND LOW COST HIGH PURITY HYDRIDE GAS PRODUCTION PROCESS 审中-公开
    分解电化学细胞和低成本高纯度气相色谱法制备方法

    公开(公告)号:US20090159454A1

    公开(公告)日:2009-06-25

    申请号:US11961396

    申请日:2007-12-20

    Abstract: This invention is an apparatus and a method for continuously generating a hydride gas of metal M1 which is substantially free of oxygen in a divided electrochemical cell. An impermeable partition or a combination of an impermeable partition and a porous diaphragm can be used to divide the electrochemical cell. The divided electrochemical cell has an anode chamber and a cathode chamber, wherein the cathode chamber has a cathode comprising metal M1, the anode chamber has an anode capable of generating oxygen, an aqueous electrolyte solution comprising a metal hydroxide M2OH partially filling the divided electrochemical cell. Hydride gas generated in the cathode chamber and oxygen generated in the anode chamber are removed through independent outlets.

    Abstract translation: 本发明是一种在分割的电化学电池中连续生成基本上不含氧的金属M1的氢化物气体的装置和方法。 可以使用不透水隔板或不透水隔板和多孔隔膜的组合来分隔电化学电池。 分电化学电池具有阳极室和阴极室,其中阴极室具有包括金属M1的阴极,阳极室具有能够产生氧的阳极,包含部分填充分隔电化学电池的金属氢氧化物M2OH的水性电解质溶液 。 在阴极室中产生的氢化物气体和在阳极室中产生的氧气通过独立的出口去除。

    Method and Apparatus for Achieving Maximum Yield in the Electrolytic Preparation of Group IV and V Hydrides
    10.
    发明申请
    Method and Apparatus for Achieving Maximum Yield in the Electrolytic Preparation of Group IV and V Hydrides 有权
    在IV和V族氢化物的电解制备中获得最大产率的方法和装置

    公开(公告)号:US20070240997A1

    公开(公告)日:2007-10-18

    申请号:US11687947

    申请日:2007-03-19

    CPC classification number: C25B1/00 C23C16/4488 C25B15/08

    Abstract: A method for generating a hydride gas of metal M1 in an electrochemical cell comprising a cathode comprising metal M1, a sacrificial anode comprising metal M2, an initial concentration of aqueous electrolyte solution comprising a metal hydroxide, M3OH, wherein the sacrificial metal anode electrochemically oxidizes in the presence of the aqueous electrolyte solution comprising M3OH to form a metal salt, and the hydride gas of metal M1 is formed by reducing the metal M1 of the cathode. The method comprises the steps of determining solubility profile curves of the metal salt as the M3OH is consumed and the metal oxide is formed by the oxidation reaction at various concentrations of M3OH; determining a maximum concentration of M3OH that, as it is consumed, does not yield a concentration of metal salt that precipitates out of the electrolyte solution; and choosing a concentration of M3OH that is in the range of at and within 5% less than the maximum concentration of M3OH to be the initial concentration of M3OH.

    Abstract translation: 一种用于在电化学电池中产生金属M 1 1的氢化物气体的方法,该电化学电池包括包含金属M 1的阴极,包括金属M 2 N的牺牲阳极 >,包含金属氢氧化物M 3 OH的含水电解质溶液的初始浓度,其中所述牺牲金属阳极在包含M 3 N 3 OH的电解质水溶液存在下电化学氧化, OH以形成金属盐,金属M 1 H 2的氢化物气体通过还原阴极的金属M 1 N而形成。 该方法包括以下步骤:当消耗M 3 OH时,确定金属盐的溶解度曲线曲线,并且通过氧化反应在不同浓度的M 3 OH; 确定当其被消耗时不会产生从电解液中析出的金属盐的浓度的M 3 OH的最大浓度; 并且选择在3%以下的范围内的M 3 OH的浓度小于M 3 OH的最大浓度,作为M 3的初始浓度, SUB> 3 OH。

Patent Agency Ranking