Abstract:
A medical device for viewing inside a body and for retrieving an object from a location within the body, the medical device comprising an endoscope having a tube defining a working channel and a basket engageable with the object. In one embodiment of the invention, the basket does not require a sheath and is disposed through the working channel such that the endoscope operates to contain or activate the sheathless basket. In another embodiment of the invention, a single push wire with a collar at its end is used in place of a sheath to control the opening and closing of the basket. In another embodiment of the invention, a tapered and funnel-shaped sheath surrounding the basket is used to contain or activate the basket. The invention minimizes the basket crossing profile so as to improve fluid flow in the working channel.
Abstract:
Tissue anchors include a flat, broad, and large contact surface for engagement with a portion of tissue. Several embodiments of composite tissue anchors include a support element and an overlay element. Tissue anchor assemblies include two or more tissue anchors, a connector, and a cinching mechanism. In some embodiments, the tissue anchors included in the tissue anchor assemblies are of different types, sizes, and/or shapes.
Abstract:
Apparatus and methods for endoluminal advancement are described herein. A shape-lockable tissue anchoring assembly generally has an elongate body, a handle assembly, and an anchoring assembly positioned at or proximal to a distal tip of the elongate body. A distal portion of the elongate body may optionally be steerable or curvable. The anchoring assembly may include various expandable or projecting anchoring features to contact and retain tissue relative to the elongate body such that pleated tissue is temporarily immobile relative to the elongate body. This anchoring can be actuated simultaneously with or independently from shape-locking of elongate body. The anchoring assembly can be actuated simultaneously with the shape-locking of the elongate body. Alternatively, the steerable distal portion of the elongate body can be angled against the pleated tissue to retain it while the endoscope is advanced relative to the pleated tissue.
Abstract:
Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically by applying thermal energy through at least one suture cutting element disposed along the deployment assembly.
Abstract:
Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically.
Abstract:
The attenuation or isolation of environmental parameters on a gastric lumen is described herein. Once tissue plications are formed into a gastric lumen or sleeve within a stomach, the newly formed lumen is subjected to a multitude of fluctuating stresses or pressure from food or fluids passing therethrough, from naturally-occurring contractions, and/or from changes in pH levels from caustic stomach acids and hormones. The tissue interface between these plications can be isolated from such environmental fluctuations, or the fluctuations can be attenuated, by a number of methods. One example is to place a gastric stent or sleeve within the newly formed lumen. Another example is to utilize multiple rows of anchors, clips, or sutures along the interface. Alternatively, bio-adhesives can be dispensed to buttress the tissue interface. In another variation, the tissue can be approximated in different configurations which effectively reduce or isolate the adhered tissue region.
Abstract:
A surgical wound retractor is adapted to dilate a wound stretchable to a desired diameter, the retractor includes a first ring having a diameter greater than that desired for the wound and being adapted for disposition interiorly of the wound. A second ring has a diameter greater than that desired for the wound and is adapted for disposition exteriorly of the wound. A plurality of retraction elements are disposed in a generally cylindrical relationship to each other, between the first ring and the second ring. These elements extend through the wound to exert a radial retraction force on the wound which is dependent on the distance separating the first ring and the second ring. Retraction elements, both distensible and non-distensible are contemplated with appropriate attachment means at the rings to provide for variations in the retraction force. With a suitable retraction sleeve, a third ring can be provided to form a circumferential retainer to vary the retraction force. Rings can also be made inflatable or self-expanding to vary the retraction force. An associated method includes the step of rolling the second ring circumferentially of the third ring to form the circumferential retainer.
Abstract:
Multi-position tissue manipulation assemblies are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. One or all the articulation controls and functions can be integrated into a singular handle enclosure connectable to the tissue manipulation assembly via a rigid or flexible tubular body. A needle deployment mechanism may be positioned within the enclosure. Such a mechanism can have multiple positions adapted to lock and/or advance a needle assembly within the enclosure in a controlled manner as well as for deploying the anchor assembly.
Abstract:
Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
Abstract:
Self-locking removable apparatus and methods for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have tissue stabilizing members adapted to stabilize tissue therebetween, an engagement member slidably disposed through the stabilizing members and having a distal end adapted to engage tissue, and a delivery tube pivotable about the tissue stabilizing members. The tissue manipulation assembly optionally may be configured for removable attachment to an endoscope.