Abstract:
A method and apparatus for the controlled synthesis and assembly of nanoparticles into nanostructured materials, including nanocomposites, includes a source of nanoparticles and a hypersonic impaction apparatus. The nanoparticles are impacted on a substrate through hypersonic impaction to thereby provide nanostructured materials as well as nanophase materials.
Abstract:
Methods of generating nanoparticles are described that comprises feeding nebulized droplets into a radio frequency plasma torch to generate nanoparticles, wherein the majority of the nanoparticles generated have a diameter of less than about 50 nm. These methods are useful for synthesizing nanoparticles of metals, semiconductors, ceramics or any other material class where the precursors are either in liquid form or can be dissolved or suspended in a suitable liquid. Methods of feeding nebulized droplets and central gas into a radio frequency plasma torch and apparatus for generating nanoparticles are also described.
Abstract:
Described herein are batches of nanoscale phosphor particles having an average particle size of less than about 200 nm and an average internal quantum efficiency of at least 40%. The batches of nanoscale phosphor particles can be substantially free of impurities. Also described herein are methods of manufacturing the nanoscale phosphor particles by passing phosphor particles through a reactive field to thereby dissociate them into elements and then synthesizing nanoscale phosphor particles by nucleating the elements and quenching the resulting particles.
Abstract:
Methods of generating nanoparticles are described that comprises feeding nebulized droplets into a radio frequency plasma torch to generate nanoparticles, wherein the majority of the nanoparticles generated have a diameter of less than about 50 nm. These methods are useful for synthesizing nanoparticles of metals, semiconductors, ceramics or any other material class where the precursors are either in liquid form or can be dissolved or suspended in a suitable liquid. Methods of feeding nebulized droplets and central gas into a radio frequency plasma torch and apparatus for generating nanoparticles are also described.
Abstract:
A particle beam deposition apparatus includes a particle source for generating a plurality of particles in suspended form, an expansion chamber, and a deposition chamber connected to the expansion chamber by an aerodynamic focusing stage, and containing a substrate. The aerodynamic focusing stage may be comprised of a plurality of aerodynamic focusing elements, or lenses. Particles, including nanoparticles, may be deposited on the substrate by generating an aerosol cloud of particles, accelerating the particles into the expansion chamber, creating a collimated beam out of the particles by passing them through the aerodynamic focusing lenses and into a deposition chamber, and impacting the particles into the substrate.
Abstract:
Described herein are batches of nanoscale phosphor particles having an average particle size of less than about 200 nm and an average internal quantum efficiency of at least 40%. The batches of nanoscale phosphor particles can be substantially free of impurities. Also described herein are methods of manufacturing the nanoscale phosphor particles by passing phosphor particles through a reactive field to thereby dissociate them into elements and then synthesizing nanoscale phosphor particles by nucleating the elements and quenching the resulting particles.
Abstract:
Photoinduced chemical vapor deposition was used to grow coatings on nanoparticles. Aerosolized nanoparticles were mixed with a vapor-phase coating reactant and introduced into a coating reactor, where the mixture was exposed to ultraviolet radiation. Tandem differential mobility analysis was used to determine coating thicknesses as a function of initial particle size.