Abstract:
A method of manufacturing a tubular member having a non-constant thickness by ironing at least a portion of the tubular material. The ironing apparatus can have a punch and a die, and the die can have a convex and concave side surface opposing the punch. The method can include bending an axial end portion of the tubular material to form a bent portion. The tubular material can then axially engage the die at the bent portion, and then the punch can be moved relative to the die to iron at least a portion of the tubular material.
Abstract:
The invention provides electroluminescent (EL) elements, such that a red EL light source, a green EL light source and a blue EL light source emit red color light, green color light, and blue color light, respectively, and are disposed at the rear of liquid crystal display elements. Each EL light source includes an organic EL element in which an organic thin film emits light. Each EL light source has a structure in which an organic luminescent layer is sandwiched between an indium tin oxide (ITO) electrode and a metal electrode which have striped patterns which are orthogonal to each other, and sections (luminescent sections) at which the striped patterns of the ITO electrode and the metal electrode intersect with each other emit light. The luminescent sections are arrayed two-dimensionally on a glass substrate and illuminate the entire display area of the liquid crystal display element.
Abstract:
An organic EL display unit is manufactured in an efficient manner. A light emission device (1000) is manufactured by bonding together a driving circuit substrate (100) formed with driving circuit constituted by thin film transistors 11, and a light emission substrate (300) comprising a successively laminated transparent electrode layer 31, bank layer 32 made from insulating material, positive hole injection layer 33, organic EL layer 34 and cathode layer 36.
Abstract:
A multi-piece rim includes a rim base including a first flange and a gutter band, a bead seat band including a second flange, a lock ring, and a first side ring located on a side of the first flange and a second side ring located on a side of the second flange. A circumferentially extending surface of the first flange and a tapered surface of a circumferentially extending inner surface of the first side ring and/or a circumferentially extending surface of the second flange and a tapered surface of a circumferentially extending inner surface of the second side ring are inclined radially outwardly in an axially outboard direction of the multi-piece rim, so that circumferential and radial slippage between rim members is prevented to suppress a fretting fatigue.
Abstract:
A liquid-crystal projection device includes an organic electroluminescent element that is sandwiched by an organic thin-film layer between an electrode layer that reflects light and a transparent electrode layer that transmits light, and a transparent liquid crystal panel that controls passage of light emitted from the surface of the organic electroluminescent element and also includes a half-mirror layer arranged on the side where light is output from the transparent electrode layer. Some of the incoming light is reflected through the transparent electrode layer to another electrode layer and the rest of the light is transmitted the distance between the half-mirror layer. The electrode layer is set to the optical distance of resonance of the light.
Abstract:
A white backlight is provided by mixing a plurality of luminous lights with balanced white light, while minimizing power consumption and reducing manufacturing cost. Luminous regions are finely arranged in order to uniformly mix a plurality of luminous colors. A white light is obtained by simultaneously lighting luminous colors in the plurality of luminous regions using a single power source. The shape of the luminous regions is determined for depositing the luminous layers.
Abstract:
A method for producing the piezoelectric thin film is based on a sol-gel process and comprises the steps of: coating a substrate with a sol composition comprising a sol, of a metal component for constituting a piezoelectric film, and a polymer compound and then drying the coating to form a film; pre-sintering the film to form a porous thin film of gel comprising an amorphous metal oxide; pre-annealing the porous thin film of gel to convert the film to a film of a crystalline metal oxide; repeating the steps at least once to form laminated films of a crystalline metal oxide; and annealing the films thus prepared to grow crystal grains of perovskite type in the film into a larger size.
Abstract:
A liquid-crystal projection device includes an organic electroluminescent element that is sandwiched by an organic thin-film layer between an electrode layer that reflects light and a transparent electrode layer that transmits light, and a transparent liquid crystal panel that controls passage of light emitted from the surface of the organic electroluminescent element and also includes a half-mirror layer arranged on the side where light is output from the transparent electrode layer. Some of the incoming light is reflected through the transparent electrode layer to another electrode layer and the rest of the light is transmitted the distance between the half-mirror layer. The electrode layer is set to the optical distance of resonance of the light.
Abstract:
There is provided a method of manufacturing a light modulation device that does not produce scattered reflection comprising: a step of forming a release layer whereby a release layer that produces separation in response to irradiation with incoming light is formed on a heat-resistant substrate having the capability of withstanding heat; a step of forming a piezoelectric layer whereby a piezoelectric layer is formed on the release layer; a patterning step whereby an electrode pattern is formed in respect of the piezoelectric layer and mirror elements are formed at each pixel; a connection step of electrically connecting the active element substrate wherein active elementary elements are provided for each pixel and the piezoelectric layer laminated on the heat-resistant substrate such that the active elements correspond to mirror elements; and an irradiating separation step whereby separation is produced in the release layer by irradiating the release layer with irradiating light from the side of the heat-resistant substrate.
Abstract:
In a method for fabricating distributed reflection multi-layered film mirrors consisting of a plurality of laminated thin films having a different refractive index, the thin films are formed using a liquid phase film formation method. The liquid phase film formation method includes a step of applying thin film materials forming the thin films, and a step of drying the applied the thin film materials. The liquid phase film formation method utilizes an ink jet method. Thin films can be formed in fine patterns with ease and in a short amount of time. Laminated layers with high reliability can be obtained in very fine patterns. The reflection properties such as film thickness and reflectance of distributed reflection multi-layered film mirrors can be controlled with ease.