Abstract:
In accordance with the invention, there are inductors with an air gap, semiconductor devices, integrated circuits, and methods of fabricating them. The method of making an inductor with an air gap can include fabricating a first level of inductor in an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures, forming an inter-level dielectric layer over the first level and repeating the steps to form two or more levels of inductor. The method can also include forming an extraction via, forming an air gap between the inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using super critical fluid process, and forming a non-conformal layer to seal the extraction via.
Abstract:
In accordance with the invention, there are diffusion barriers, integrated circuits, and semiconductor devices and methods of fabricating them. The method of fabricating a diffusion barrier can include providing a dielectric layer, forming a first silicon enriched layer over the dielectric layer by exposing the dielectric layer to a silicon-containing ambient, and forming a barrier layer over the first silicon enriched layer.
Abstract:
A method for serially polishing a plurality of semiconductor wafers, wherein a CMP apparatus having a first polishing pad and a second polishing pad is provided. A first slurry composition is disposed between the first polishing pad and a first wafer when the first wafer is in a first state, and a first polishing on the first wafer via the first polishing pad and first slurry composition is commenced at a first commencement time. A second slurry composition is disposed between the second polishing pad and a second wafer when the second wafer is in a second state, and a second polishing on the second wafer via the second polishing pad and second slurry is commenced at a second commencement time, wherein the second commencement time differs from the first commencement time by a first intermediate period. One or more of the first wafer and the second wafer is rinsed with a pre-rinse agent for at least a portion of the first intermediate period. The first polishing and second polishing are halted at substantially the same end time, therein placing the first wafer in the second state and the second wafer in a third state.
Abstract:
An x-ray confocal defect detection system comprises an x-ray source, a confocal component, and defect detectors and operates on a target portion of a semiconductor device. The x-ray source generates x-ray energy. The semiconductor device includes a plurality of formed layers. The target portion is a selected layer or portion of the plurality of formed layers. At least a portion of the x-ray is transmitted through the semiconductor device as transmitted x-ray. The confocal component receives the transmitted x-ray and passes target x-ray intensity from the target portion of the transmitted x-ray energy. Detectors receive the target x-ray from the confocal component from which defect analysis can be performed.
Abstract:
An on-chip decoupling capacitor (106) and method of fabrication. The decoupling capacitor (106) is integrated at the top metal interconnect level (104) and includes surface protection cladding (109) for the copper metal (104b) of the top metal interconnect.
Abstract:
In accordance with the invention, there are diffusion barriers, integrated circuits, and semiconductor devices and methods of fabricating them. The method of fabricating a diffusion barrier can include providing a dielectric layer, forming a first silicon enriched layer over the dielectric layer by exposing the dielectric layer to a silicon-containing ambient, and forming a barrier layer over the first silicon enriched layer.
Abstract:
Devices and methods are presented to fabricate diffusion barrier layers on a substrate. Presently, barrier layers comprising a nitride layer and a pure metal layer are formed using a physical vapor deposition (PVD) process that requires multiple ignition steps, and results in nitride-layer thicknesses of no less than 2 nm. This invention discloses devices and process to produce nitride-layers of less than
Abstract:
A semiconductor device, such as an inductor, is formed with an air gap. A first level has an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures. An inter-level dielectric layer is formed over the first level. An extraction via is formed through the intra-metal dielectric layer and inter-level dielectric layer. An air gap is formed between inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using a supercritical fluid process, and forming a non-conformal layer to seal the extraction via. The air gap may be filled with an inert gas, like argon or nitrogen.
Abstract:
State of the art Integrated Circuits (ICs) encompass a variety of circuits, which have a wide variety of contact densities as measured in regions from 10 to 1000 microns in size. Fabrication processes for contacts have difficulty with high and low contact densities on the same IC, leading to a high incidence of electrical shorts and reduced operating speed of the circuits. This problem is expected to worsen as feature sizes shrink in future technology nodes. This invention is an electrically non-functional contact, known as a dummy contact, that is utilized to attain a more uniform distribution of contacts across an IC, which allows contact fabrication processes to produce ICs with fewer defects, and a method for forming said dummy contacts in ICs.
Abstract:
In accordance with the invention, there are inductors with an air gap, semiconductor devices, integrated circuits, and methods of fabricating them. The method of making an inductor with an air gap can include fabricating a first level of inductor in an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures, forming an inter-level dielectric layer over the first level and repeating the steps to form two or more levels of inductor. The method can also include forming an extraction via, forming an air gap between the inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using super critical fluid process, and forming a non-conformal layer to seal the extraction via.