Abstract:
A semiconductor device, such as an inductor, is formed with an air gap. A first level has an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures. An inter-level dielectric layer is formed over the first level. An extraction via is formed through the intra-metal dielectric layer and inter-level dielectric layer. An air gap is formed between inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using a supercritical fluid process, and forming a non-conformal layer to seal the extraction via. The air gap may be filled with an inert gas, like argon or nitrogen.
Abstract:
In accordance with the invention, there are inductors with an air gap, semiconductor devices, integrated circuits, and methods of fabricating them. The method of making an inductor with an air gap can include fabricating a first level of inductor in an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures, forming an inter-level dielectric layer over the first level and repeating the steps to form two or more levels of inductor. The method can also include forming an extraction via, forming an air gap between the inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using super critical fluid process, and forming a non-conformal layer to seal the extraction via.
Abstract:
A method (10) of forming a MIM (metal insulator metal) capacitor is disclosed whereby adverse affects associated with copper diffusion are mitigated even as the capacitor is scaled down. A layer of bottom electrode/copper diffusion barrier material (136) is formed (16) within an aperture (128) wherein the capacitor (100) is to be defined. The bottom electrode layer (136) is formed via a directional process so that a horizontal aspect (138) of the layer (136) is formed over a metal (110) at a bottom of the aperture (128) to a thickness (142) that is greater than a thickness (144) of a sidewall aspect (148) of the layer (136) formed upon sidewalls (132) of the aperture (128). Accordingly, the thinner sidewall aspects (148) are removed during an etching act (18) while some of the thicker horizontal aspect (138) remains. A layer of capacitor dielectric material (150) is then conformally formed (20) into the aperture 128 and over the horizontal aspect (138). A layer of top electrode material (152) is then conformally formed (22) over the layer of capacitor dielectric material (150) to complete the capacitor stack (154).
Abstract:
The density of components in integrated circuits (ICs) is increasing with time. The density of heat generated by the components is similarly increasing. Maintaining the temperature of the components at reliable operating levels requires increased thermal transfer rates from the components to the IC package exterior. Dielectric materials used in interconnect regions have lower thermal conductivity than silicon dioxide. This invention comprises a heat pipe located in the interconnect region of an IC to transfer heat generated by components in the IC substrate to metal plugs located on the top surface of the IC, where the heat is easily conducted to the exterior of the IC package. Refinements such as a wicking liner or reticulated inner surface will increase the thermal transfer efficiency of the heat pipe. Strengthening elements in the interior of the heat pipe will provide robustness to mechanical stress during IC manufacture.
Abstract:
A semiconductor device, such as an inductor, is formed with an air gap. A first level has an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures. An inter-level dielectric layer is formed over the first level. An extraction via is formed through the intra-metal dielectric layer and inter-level dielectric layer. An air gap is formed between inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using a supercritical fluid process, and forming a non-conformal layer to seal the extraction via. The air gap may be filled with an inert gas, like argon or nitrogen.
Abstract:
In accordance with the invention, there are inductors with an air gap, semiconductor devices, integrated circuits, and methods of fabricating them. The method of making an inductor with an air gap can include fabricating a first level of inductor in an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures, forming an inter-level dielectric layer over the first level and repeating the steps to form two or more levels of inductor. The method can also include forming an extraction via, forming an air gap between the inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using super critical fluid process, and forming a non-conformal layer to seal the extraction via.
Abstract:
An embodiment of the invention is a method of manufacturing an integrated circuit. The method includes forming a capping layer of a back end structure (step 706), drilling an extraction line from the capping layer to an inter-metal dielectric layer (step 708), performing a supercritical fluid process to remove portions of the inter-metal dielectric layer that are coupled to the extraction line (step 710): thereby forming a denuded dielectric region. Another embodiment of the invention is an integrated circuit 2 having a back-end structure 5 coupled to a front-end structure 4. The back-end structure 5 having a first metal level 22. The first metal level 22 having metal interconnects 15 and an inter-metal dielectric layer 19. The back-end structure 5 further containing an extraction line 24 and a denuded dielectric region 25 coupled to the extraction line 24.
Abstract:
A process for removing resist (114) from a CDO dielectric material (110) that uses a non-damaging plasma in a reducing atmosphere under high power and using a structure (150) or other means to limit ions from the plasma from reaching the surface of the CDO material (110).
Abstract:
The density of components in integrated circuits (ICs) is increasing with time. The density of heat generated by the components is similarly increasing. Maintaining the temperature of the components at reliable operating levels requires increased thermal transfer rates from the components to the IC package exterior. Dielectric materials used in interconnect regions have lower thermal conductivity than silicon dioxide. This invention comprises a heat pipe located in the interconnect region of an IC to transfer heat generated by components in the IC substrate to metal plugs located on the top surface of the IC, where the heat is easily conducted to the exterior of the IC package. Refinements such as a wicking liner or reticulated inner surface will increase the thermal transfer efficiency of the heat pipe. Strengthening elements in the interior of the heat pipe will provide robustness to mechanical stress during IC manufacture.
Abstract:
An embodiment of the invention is a method of manufacturing an integrated circuit. The method includes forming a capping layer of a back end structure (step 706), drilling an extraction line from the capping layer to an inter-metal dielectric layer (step 708), performing a supercritical fluid process to remove portions of the inter-metal dielectric layer that are coupled to the extraction line (step 710): thereby forming a denuded dielectric region. Another embodiment of the invention is an integrated circuit 2 having a back-end structure 5 coupled to a front-end structure 4. The back-end structure 5 having a first metal level 22. The first metal level 22 having metal interconnects 15 and an inter-metal dielectric layer 19. The back-end structure 5 further containing an extraction line 24 and a denuded dielectric region 25 coupled to the extraction line 24.