Abstract:
A detection system includes a detection device and an anti-evaporation device. The detection device comprises a region configured to merge at least two small drops and to detect a potential transient signal generated by the merger of the drops. The an anti-evaporation is configured to enclose the region and limit evaporation from the region. A method for detecting a signal includes the following steps: depositing drops of potentially reactive chemical solutions on a detection device within a drop-merging region; placing an anti-evaporation device over the drop-merging region to form a seal around the drop-merging region; merging the drops of potentially reactive chemical solutions; and measuring a signal occurring within the merged solution drops.
Abstract:
The present invention, in certain aspects, discloses systems and methods for treating a human being and/or items with descenting material, the systems, in certain aspects, including a generator for producing descenting material, and, in certain aspects at least one direction apparatus in communication with the generator for receiving produced descenting material from the generator and for directing said descenting material in a desired direction.
Abstract:
Various fluidic techniques can employ ducting structures, such as microstructures, that extend between other components, such as plate-like structures. A ducting structure can, for example, include an inlet opening toward or near one plate-like structure, an outlet opening toward or near another plate-like structure, and a duct in which fluid flows after being received through the inlet opening and before being provided through the outlet opening. In some implementations, a ducting structure is photo-defined, such as by exposing a photoimageable structure and then removing either exposed or unexposed regions. In some implementations, a ducting structure is a freestanding polymer microstructure. In some implementations, ducting structures are microstructures that extend approximately the same length between first and second plate-like structures, and have a ratio of length to maximum cavity diameter of approximately two or more. A printhead implementation includes an array of such microstructures supported between drive side and drop side assemblies.
Abstract:
A method for detecting chemical reactions uses a nanocalorimeter having a substrate including thermal isolation capability residing on the substrate, thermal equilibration regions residing within the thermal isolation capability, and thermal measurement capability residing within each of the thermal equilibration regions. The thermal measurement device is connected to detection electronics. The method includes depositing drops of potentially reactive chemical solutions within the thermal equilibration region. These potentially reactive solution drops are merged through the use of drop merging electrodes residing within the thermal isolation region. The thermal change occurring within the merged solution drops is then measured with the detection electronics.
Abstract:
In accordance with one aspect of the present invention, a cantilever of a probe-based instrument is deflected by directing a beam of ultrasonic acoustic energy at the cantilever to apply acoustic radiation pressure to the cantilever. The energy is generated by an acoustic actuator. The transmitted beam preferably is focused using a cylindrical lens, providing a beam tightly focused in one dimension and unfocused in a second dimension. In accordance with another aspect of the present invention, a power source such as an RF signal generator is operated so as to spread the spectrum of acoustic radiation on a time scale that is short or comparable to the acoustic roundtrip time. Such a design diminishing the resonance effects and sensitivity to spacing between the cantilever and the acoustic source.
Abstract:
Various fluidic techniques can employ ducting structures, such as microstructures, that extend between other components, such as plate-like structures. A ducting structure can, for example, include an inlet opening toward or near one plate-like structure, an outlet opening toward or near another plate-like structure, and a duct in which fluid flows after being received through the inlet opening and before being provided through the outlet opening. In some implementations, a ducting structure is photo-defined, such as by exposing a photoimageable structure and then removing either exposed or unexposed regions. In some implementations, a ducting structure is a freestanding polymer microstructure. In some implementations, ducting structures are microstructures that extend approximately the same length between first and second plate-like structures, and have a ratio of length to maximum cavity diameter of approximately two or more. A printhead implementation includes an array of such microstructures supported between drive side and drop side assemblies.
Abstract:
In accordance with one aspect of the present exemplary embodiment, a printhead includes a printed circuit board having at least one base layer, with at least one electrical trace, at least one fluidic passage and at least one fluidic chamber as part of the printed circuit board. The at least one electrical trace, fluidic passage and fluidic chamber are formed using printed circuit board manufacturing processes. An integrated circuit control chip is attached to the printed circuit board using known printed circuit board techniques. At least one fluidic actuator arrangement and aperture plate are attached to the printed circuit board using known PCB attachment processes.
Abstract:
A material for a thick film element is deposited onto a surface of a first substrate to form a thick film element structure having a thickness of between greater than 10 μm to 100 μm. The at least one thick film element structure is bonded to a second substrate. Thereafter, the first substrate is removed from the at least one thick film element structure using a liftoff process which includes emitting, from a radiation source (such as a laser or other appropriate device), a beam through the first substrate to an attachment interface formed between the first substrate and the at least one thick film element structure at the surface of the first substrate. The first substrate is substantially transparent at the wavelength of the beam, and the beam generates sufficient energy at the interface to break the attachment.
Abstract:
A toner jet printer and method of use for printing images by manipulating individual toner particles using two-dimensional print cell arrays built by micro electro mechanical systems (MEMS) technologies. Toner particles are positioned by electrostatic forces within each print cell by either selective or non-selective filling. If selectively filled, each cell is then subjected to a mechanical force to eject the toner particles onto a paper substrate. If non-selectively filled, only those print cells corresponding to an intended image are addressed electronically to eject a toner particle from an addressed cell by mechanical forces controlled by micro actuator actuation. Single color or multiple color printing can be achieved using the same cell array.
Abstract:
Devices, systems, and methods to treat an environment. The device includes a scent control material source. The device can also include a dehumidifier, humidifier, and one or more fans. The scent control material device is configured to output a scent control material (e.g., an oxidant) into the environment to reduce pathogens, dispose of scent molecules and their sources, and otherwise treat the environment. The device can include a controller communicatively coupled to the scent control material source, dehumidifier, humidifier, and one or more fans. The controller can implement operational programs dictating at least one output of the device. The device can also function in a cyclical or periodic mode in which an output of the device can be varied to more effectively treat the environment. In examples, the controller can operate in conjunction with a remote control to regulate output parameters of the device.