Abstract:
An electrolysis device with a rectifier comprises: an electrolytic cell; a joint panel with a first surface joined to the electrolytic cell; an electrode module comprising a housing, a plurality of electrodes provided inside the housing, and an auxiliary panel joined to a second surface of the joint panel, the auxiliary panel having a first end installed in the electrolytic cell and a second end perpendicularly protruding from an external periphery of a second end of the housing; a rectifier module having a second side surface from which an electrode protrudes; an L-shaped panel joined to second surface of the joint panel and any side surface of the rectifier module; and a bus bar that connects the electrode of the electrode module to the electrode of the rectifier module.
Abstract:
An electrolysis device with a rectifier comprises: an electrolytic cell; a joint panel with a first surface joined to the electrolytic cell; an electrode module comprising a housing, a plurality of electrodes provided inside the housing, and an auxiliary panel joined to a second surface of the joint panel, the auxiliary panel having a first end installed in the electrolytic cell and a second end perpendicularly protruding from an external periphery of a second end of the housing; a rectifier module having a second side surface from which an electrode protrudes; an L-shaped panel joined to second surface of the joint panel and any side surface of the rectifier module; and a bus bar that connects the electrode of the electrode module to the electrode of the rectifier module.
Abstract:
A porous membrane contains a polyethylene resin, in a core layer, pores of sizes that are relatively larger than those of pores in each of skin layers on the opposite sides are distributed, and the skin layers on the opposite sides have substantially same pore characteristics. A method for manufacturing a porous membrane includes the steps of: obtaining a mixture of a liquid-type paraffin oil and a solid-type paraffin wax; adding the mixture to a polyethylene resin to obtain a raw material resin mixture; extruding and cooling the raw material resin mixture; stretching the raw material resin mixture; and immersing the stretched raw material resin mixture in an organic solvent to extract a mixture of the oil and the wax.
Abstract:
A bag holder comprising a pair of elongated vertical side members connected by a lower support bar and an upper brace member. An arm member forwardly extends from an upper end of each of the side members. Each arm member is formed into an upwardly extending horizontally elongated tab with a rearwardly projecting protrusion and a bent nose. The brace member has a rearwardly and downwardwardly extending middle portion, and a rod member extends perpendicularly and rearwardly from each end of the brace member. The device can further have a removeable cover member fitting over the arms.
Abstract:
The method comprises the steps of: forming the transistor on a substrate and then depositing an interlayer insulating layer, and forming a design pattern of a first conductive layer by vertically etching it using a mask; horizontally overetching the pattern by using the etching process used for forming the pattern; depositing a first insulating film and then depositing the second conductive layer to the thickness needed to protect the first insulating film; vertically etching the second conductive layer, first insulating film and interlayer insulating layer by applying the mask used in vertically etching the first conductive layer; additionally depositing the second conductive layer; forming a design pattern of the second conductive layer by vertically etching it using a mask; horizontally overetching the pattern of the second conductive layer; depositing the second insulating film and then depositing a third conductive layer to have the thickness to protect the second insulating film; vertically etching the third conductive layer and second insulating film by applying the etching mask of the second conductive layer; additionally depositing the third conductive layer. The method attains larger effective capacitance in which a plate electrode layer surrounds even the lower surface of a storage electrode layer of the stack capacitor without using any extra mask.
Abstract:
A cable driven wrist mechanism for a robot arm which executes a rolling motion and a pitching motion. The wrist mechanism includes a first drive body and a second drive body which are independently driven. The wrist mechanism includes first and second rotary bodies which are connected to the first and second rotary bodies. The wrist mechanism further includes a third drive body perpendicular to the first and second drive bodies. At least two cables are connected between the drive bodies and the rotary bodies in a criss-cross manner to transmit forces of the first and second rotary bodies to the third rotary body.
Abstract:
A cable-driven wrist mechanism for a robot arm which executes a rolling motion and a pitching motion, the wrist mechanism comprising: first and second motors provided in the robot arm; a first drive body rotated by the first motor; a second drive body placed above the first drive body, the second drive body being rotated by the second motor about a same rotating axis as that of the first drive body and independently with respect to the first drive body; a first rotary body rotated about a rotating shaft which is perpendicular to the rotating axis of the first drive body and located in a same plane as the rotating axis of the first drive body; a second rotary body having a rotating shaft same as the first rotary body, the second rotary body being symmetric to the first rotary body with respect to the rotating axis of the first drive body; a third rotary body connected to a sub-shaft which perpendicularly branches from the rotating shaft of the first and second rotary bodies, the third rotary body being symmetric to the first and second drive bodies with respect to the rotating shaft of the first and second rotary bodies; a power transmitting unit for transmitting rotating forces from the first and second drive bodies to the first and second rotary bodies, respectively, the power transmitting unit including at least two cables which are connected between each of the first and second drive bodies and each of the first and second rotary bodies in a crisscross manner to intersect between the drive body and the rotary body, with both ends of each of the two cables being fixed to the drive body and the rotary body, respectively; and rotating force transmitting devices for transmitting rotating forces of the first and second rotary bodies to the third rotary body.
Abstract:
A round recliner for a vehicle having three lock gears evenly spaced apart from each other. Each of the lock gears are interposed between a cam and a corresponding lock gear supporting member in such a manner that the lock gears are engaged with a circular inner gear part of a sector gear, wherein the lock gears are turned along the lock gear supporting members so that an outer gear part of each of the lock gears is disengaged from the inner gear part of the sector gear or the outer gear part of each of the lock gears is engaged with the inner gear part of the sector gear, thereby minimizing occurrence of clearances in the recliner and preventing any irregular engagement of the recliner.
Abstract:
A known photoelectric sensor is utilized for optically detecting the presence of a tape cassette in a loading commencement position to produce an electrical driving signal. Responsive to the driving signal, an electric loading motor is activated to cause a loading arm to swing from one angular position to another angular position. Rotary movement of the loading motor is translated into a pivotal swinging movement of the loading arm by a unitary linkage lever. The linkage lever carries a light beam interrupter piece which may cut off the light beam projected by the photoelectric sensor to enable the latter to generate the electrical driving signal. The linkage lever also carries an arm locking finger adapted to lock the loading arm in a loading completion position. A reversible speed reduction gadget is employed in operatively coupling the linkage lever to the loading motor.
Abstract:
A highly integrated semiconductor memory device comprises a plurality of memory cells formed by alternately disposing a stack-type capacitor cell and a combined stack-trench type capacitor cell both in row and column directions. Each storage electrode of the capacitor of the memory cell is extended to overlap with the storage electrode of the capacitor of the adjacent memory cell. The combined stack-trench type capacitor is formed into the substrate to increase the storage capacitance thereof which allow the storage capacitance of the stack-type capacitor to increase by extending the storage electrode of the capacitor. Due to the alternate arrangement of stack-trench type capacitor and stack-type capacitor, step coverage, leakage current and soft errors of stack-trench type capacitor are prevented.