Abstract:
A method of encapsulating a ferroelectric capacitor or ferroelectric memory cell includes forming encapsulation materials adjacent to a ferroelectric capacitor. forming a ferroelectric oxide (FEO) layer over the encapsulated ferroelectric capacitor, and forming an FEO encapsulation layer over the ferroelectric oxide to provide additional protection from hydrogen induced degradation.
Abstract:
Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating a damascene self-aligned F-RAM that allows for the formation of a ferroelectric capacitor with separated PZT layers aligned with a preexisting, three dimensional (3-D) transistor structure.
Abstract:
Systems and methods for facilitating lift-off processes are provided. In one embodiment, a method for pattering a thin film on a substrate comprises: depositing a first sacrificial layer of photoresist material onto a substrate such that one or more regions of the substrate are exposed through the first sacrificial layer; depositing a protective layer over at least part of the first sacrificial layer; partially removing the first sacrificial layer to form at least one gap between the protective layer and the substrate; depositing an optical coating over the protective layer and the one or more regions of the substrate exposed through the first sacrificial layer, wherein the optical coating deposited over the protective layer is separated by the at least one gap from the optical coating deposited over the regions of the substrate exposed through the first sacrificial layer; and removing the first sacrificial layer.
Abstract:
An array of ferroelectric memory cells that allows imprint mitigation includes ferroelectric memory cells respectively coupled to word lines, plate lines, and bit lines; a word line driver for driving the word lines; a plate line driver for driving the plate lines; a bit line driver for driving the bit lines; and an isolation device driver for driving isolation devices coupled between the bit lines and a plurality of bit lines. The method for mitigating imprint includes coupling the bit lines to a respective plurality of sense amplifiers, turning on a word line and pulsing a plate line associated with a row of ferroelectric memory cells, disconnecting the bit lines from the respective sense amplifiers, driving the plate line low and the bit lines high, driving the plate line high and the bit lines low, driving the plate line low and floating the bit lines, driving the bit lines with the sense amplifier, and turning off the word line and precharging the bit lines. The method can be performed after each memory access, or can be performed whenever convenient with a counter and a rejuvenate command.
Abstract:
A mounting apparatus for mounting a speaker to a computer case, includes a base plate assembled on the computer case, a fixing member configured to fix two corners on a top edge of the speaker, and an elastic sheet configured to fix a bottom edge of the speaker.
Abstract:
An array of ferroelectric memory cells that allows imprint mitigation includes ferroelectric memory cells respectively coupled to word lines, plate lines, and bit lines; a word line driver for driving the word lines; a plate line driver for driving the plate lines; a bit line driver for driving the bit lines; and an isolation device driver for driving isolation devices coupled between the bit lines and a plurality of bit lines. The method for mitigating imprint includes coupling the bit lines to a respective plurality of sense amplifiers, turning on a word line and pulsing a plate line associated with a row of ferroelectric memory cells, disconnecting the bit lines from the respective sense amplifiers, driving the plate line low and the bit lines high, driving the plate line high and the bit lines low, driving the plate line low and floating the bit lines, driving the bit lines with the sense amplifier, and turning off the word line and precharging the bit lines. The method can be performed after each memory access, or can be performed whenever convenient with a counter and a rejuvenate command.
Abstract:
An enclosure for an electronic device includes a chassis and a cover. The chassis includes a bottom wall and an opening. A circuit board is mounted on the bottom wall. The cover is mounted on the chassis to cover the opening of the chassis. A fixing apparatus is movably mounted on the cover. The fixing apparatus contacts and biases the expansion card toward the circuit board.
Abstract:
A ferroelectric reference circuit generates a reference voltage proportional to (P+U)/2 and is automatically centered between the bit line voltages corresponding to the P term and the U term across wide temperature and voltage ranges. To avoid fatiguing the reference ferroelectric capacitors generating (P+U)/2, the reference voltage is refreshed once every millisecond. To eliminate the variation of the reference voltage due to the leakage in the ferroelectric capacitors during this period of time, the reference voltage generated from the reference ferroelectric capacitors is digitized when it is refreshed. The digital value is fixed and converted to an analog value which is then fed into sense amplifiers for resolving the data states. The reference voltage is automatically at the center of the switching (P) and non-switching (U) signals and therefore the signal margin is maximized.
Abstract:
A ferroelectric reference circuit generates a reference voltage proportional to (P+U)/2 and is automatically centered between the bit line voltages corresponding to the P term and the U term across wide temperature and voltage ranges. To avoid fatiguing the reference ferroelectric capacitors generating (P+U)/2, the reference voltage is refreshed once every millisecond. To eliminate the variation of the reference voltage due to the leakage in the ferroelectric capacitors during this period of time, the reference voltage generated from the reference ferroelectric capacitors is digitized when it is refreshed. The digital value is fixed and converted to an analog value which is then fed into sense amplifiers for resolving the data states. The reference voltage is automatically at the center of the switching (P) and non-switching (U) signals and therefore the signal margin is maximized.
Abstract:
Consistent with an aspect of the present invention, a lateral bipolar transistor is provided that exhibits similar performance as that of high speed vertical bipolar junction transistors. The lateral bipolar transistor includes a polysilicon side-wall-spacer (PSWS) that forms a contact with the base of the transistor, and thus avoids the process step of aligning a contact mask to a relatively thin base region. The side wall spacer allows self-alignment of the base/emitter region, and has reduced base resistance and junction capacitance. Accordingly, improved cutoff frequency (fτ) and maximum oscillation frequency (fmax) can be achieved. Moreover, this novel topology enables the realization of Bipolar CMOS (BiCMOS) technology on insulating substrates, such as SOI.