摘要:
Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating the same in the form of a damascene self-aligned F-RAM device comprising a PZT capacitor built on the sidewalls of an oxide trench, while allowing for the simultaneous formation of two ferroelectric sidewall capacitors.
摘要:
Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating a damascene self-aligned F-RAM that allows for the formation of a ferroelectric capacitor with separated PZT layers aligned with a preexisting, three dimensional (3-D) transistor structure.
摘要:
A semiconductor manufacturing method is directed to forming a ferroelectric film, and in particular a ferroelectric film of the bismuth layer structure type, that has a significant component of reversible polarization perpendicular to the plane of the electrodes. The manufacturing method is conducted at low temperatures on commercially suitable electrodes and is compatible with conventional CMOS fabrication techniques. A ferroelectric strontium-bismuth-tantalate ("SBT") film is formed using two sputtering targets. A first sputtering target is comprised primarily of bismuth oxide (Bi.sub.2 O.sub.3) and a second sputtering target is comprised primarily of SBT. An initial layer of bismuth oxide is formed on the bottom electrode of a ferroelectric capacitor stack. The initial layer of bismuth oxide is directly followed by a sputtered layer of SBT. A second layer of bismuth oxide is then applied and the layers are alternated in a "layer cake" fashion containing a plurality of layers until a desired thickness of the film is attained. At the end of the deposition, a crystallization anneal is performed to make the film ferroelectric. Once the ferroelectric film is in place, the top electrode is formed and the remaining processing steps are completed.
摘要:
A semiconductor manufacturing method is directed to forming a ferroelectric film, and in particular a ferroelectric film of the bismuth layer structure type, that has a significant component of reversible polarization perpendicular to the plane of the electrodes. The manufacturing method is conducted at low temperatures on commercially suitable electrodes and is compatible with conventional CMOS fabrication techniques. A ferroelectric strontium-bismuth-tantalate ("SBT") film is formed using two sputtering targets. A first sputtering target is comprised primarily of bismuth oxide (Bi.sub.2 O.sub.3) and a second sputtering target is comprised primarily of SBT. An initial layer of bismuth oxide is formed on the bottom electrode of a ferroelectric capacitor stack. The initial layer of bismuth oxide is directly followed by a sputtered layer of SBT. A second layer of bismuth oxide is then applied and the layers are alternated in a "layer cake" fashion containing a plurality of layers until a desired thickness of the film is attained. At the end of the deposition, a crystallization anneal is performed to make the film ferroelectric. Once the ferroelectric film is in place, the top electrode is formed and the remaining processing steps are completed.
摘要:
A method of encapsulating a ferroelectric capacitor or ferroelectric memory cell includes forming encapsulation materials adjacent to a ferroelectric capacitor. forming a ferroelectric oxide (FEO) layer over the encapsulated ferroelectric capacitor, and forming an FEO encapsulation layer over the ferroelectric oxide to provide additional protection from hydrogen induced degradation.
摘要:
A method of encapsulating a ferroelectric capacitor or ferroelectric memory cell includes forming encapsulation materials adjacent to a ferroelectric capacitor. forming a ferroelectric oxide (FEO) layer over the encapsulated ferroelectric capacitor, and forming an FEO encapsulation layer over the ferroelectric oxide to provide additional protection from hydrogen induced degradation.
摘要:
Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating a damascene self-aligned F-RAM that allows for the formation of a ferroelectric capacitor with separated PZT layers aligned with a preexisting, three dimensional (3-D) transistor structure.
摘要:
Disclosed is a novel non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating a damascene self-aligned F-RAM device structure on a planar surface using a reduced number of masks and etching steps.
摘要:
Disclosed is a novel non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating a damascene self-aligned F-RAM device structure on a planar surface using a reduced number of masks and etching steps.
摘要:
Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating the same in the form of a damascene self-aligned F-RAM device comprising a PZT capacitor built on the sidewalls of an oxide trench, while allowing for the simultaneous formation of two ferroelectric sidewall capacitors.