CNT-INFUSED GLASS FIBER MATERIALS AND PROCESS THEREFOR
    4.
    发明申请
    CNT-INFUSED GLASS FIBER MATERIALS AND PROCESS THEREFOR 审中-公开
    CNT-INFUSED玻璃纤维材料及其工艺

    公开(公告)号:US20100279569A1

    公开(公告)日:2010-11-04

    申请号:US12611070

    申请日:2009-11-02

    摘要: A composition includes a carbon nanotube (CNT)-infused glass fiber material, which includes a glass fiber material of spoolable dimensions and carbon nanotubes (CNTs) bonded to it. The CNTs are uniform in length and distribution. A continuous CNT infusion process includes: (a) disposing a carbon-nanotube forming catalyst on a surface of a glass fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the glass fiber material, thereby forming a carbon nanotube-infused glass fiber material. The continuous CNT infusion process optionally includes extruding a glass fiber material from a glass melt or removing sizing material from a pre-fabricated glass fiber material.

    摘要翻译: 组合物包括碳纳米管(CNT) - 填充玻璃纤维材料,其包括可卷绕尺寸的玻璃纤维材料和与其结合的碳纳米管(CNT)。 CNT的长度和分布均匀。 连续的CNT输注方法包括:(a)在可卷绕的尺寸的玻璃纤维材料的表面上设置碳纳米管形成催化剂; 和(b)在玻璃纤维材料上合成碳纳米管,从而形成碳纳米管注入的玻璃纤维材料。 连续CNT注入工艺任选地包括从玻璃熔体挤出玻璃纤维材料或从预先制备的玻璃纤维材料中去除上浆材料。

    System and method of synthesizing carbon nanotubes
    5.
    发明授权
    System and method of synthesizing carbon nanotubes 有权
    合成碳纳米管的系统和方法

    公开(公告)号:US07763231B2

    公开(公告)日:2010-07-27

    申请号:US11834210

    申请日:2007-08-06

    申请人: Slade H. Gardner

    发明人: Slade H. Gardner

    摘要: A process for producing carbon nanotubes includes carbon plasma generation with microwave energy, plasma stabilization, and product deposition. Stabilization homogenizes the plasma energy density and concentration, leading to a more efficient reactor. A transition metal catalyst and associated catalyst support are used to form the end product. The formation region may have variations of geometry and supporting equipment that will affect the rate and purity of production. The formation region is immediately downstream from the plasma stabilization region such that the apparatus may be mounted on a robotic arm for direct deposition of product.

    摘要翻译: 制造碳纳米管的方法包括利用微波能量产生碳等离子体,等离子体稳定化和产物沉积。 稳定化使等离子体能量密度和浓度均匀化,从而形成更有效的反应器。 使用过渡金属催化剂和相关的催化剂载体来形成最终产物。 形成区域可能具有将影响生产速率和纯度的几何形状和支撑设备的变化。 形成区域紧邻等离子体稳定区域的下游,使得该装置可以安装在机器人手臂上以直接沉积产品。

    SYSTEM AND METHOD OF SYNTHESIZING CARBON NANOTUBES
    7.
    发明申请
    SYSTEM AND METHOD OF SYNTHESIZING CARBON NANOTUBES 有权
    合成碳纳米管的方法和系统

    公开(公告)号:US20080170983A1

    公开(公告)日:2008-07-17

    申请号:US11834210

    申请日:2007-08-06

    申请人: Slade H. Gardner

    发明人: Slade H. Gardner

    IPC分类号: D01F9/12

    摘要: A process for producing carbon nanotubes includes carbon plasma generation with microwave energy, plasma stabilization, and product deposition. Stabilization homogenizes the plasma energy density and concentration, leading to a more efficient reactor. A transition metal catalyst and associated catalyst support are used to form the end product. The formation region may have variations of geometry and supporting equipment that will affect the rate and purity of production. The formation region is immediately downstream from the plasma stabilization region such that the apparatus may be mounted on a robotic arm for direct deposition of product.

    摘要翻译: 制造碳纳米管的方法包括利用微波能量产生碳等离子体,等离子体稳定化和产物沉积。 稳定化使等离子体能量密度和浓度均匀化,从而形成更有效的反应器。 使用过渡金属催化剂和相关的催化剂载体来形成最终产物。 形成区域可能具有影响生产率和纯度的几何形状和支撑设备的变化。 形成区域紧邻等离子体稳定区域的下游,使得该装置可以安装在机器人手臂上以直接沉积产品。

    Carbon layup tape with fugitive binder and method of use

    公开(公告)号:US07045083B2

    公开(公告)日:2006-05-16

    申请号:US10044438

    申请日:2002-01-11

    申请人: Slade H. Gardner

    发明人: Slade H. Gardner

    IPC分类号: B29C70/48

    摘要: A unidirectional tape comprising carbon fibers and a fugitive binder is provided, as well as methods for forming the tape and composite parts using the unidirectional tape in a resin-transfer molding (RTM) process. A fugitive binder adheres fibers of the tape. The tape is laid in an RTM mold, and the mold is sealed or vacuum bagged, then heated. Hot nitrogen gas is pumped through the mold cavity, heating the carbon fibers to completely pyrolyze the binder. No residue from the binder remains, as the nitrogen carries gaseous products from the pyrolysis out of the mold. The mold is cooled to a temperature suitable for resin injection, and resin is injected into the mold cavity, wetting the fibers of the tape and completely filling the cavities of the mold. The mold is heated to cause curing of the resin, then cooled and disassembled for removal of the completed composite component.