摘要:
A semiconductor integrated circuit device, a method of manufacturing the same, and a method of driving the same are provided. The device includes a semiconductor substrate, an upper electrode extending from a surface of the semiconductor substrate; a plurality of switching structures extending from both sidewalls of the upper electrode in a direction parallel to the surface of the semiconductor substrate, and a phase-change material layer disposed between the plurality of switching structures and the upper electrode.
摘要:
A semiconductor integrated circuit device, a method of manufacturing the same, and a method of driving the same are provided. The device includes a semiconductor substrate, an upper electrode extending from a surface of the semiconductor substrate; a plurality of switching structures extending from both sidewalls of the upper electrode in a direction parallel to the surface of the semiconductor substrate, and a phase-change material layer disposed between the plurality of switching structures and the upper electrode.
摘要:
A circuit for generating a reference voltage includes at least one reference cell, a reference cell write driver, a reference cell sense amplifier, and a voltage compensation unit. The reference cell is a variable resistance memory cell. The reference cell write driver writes data to the reference cell. The reference cell sense amplifier reads out the data stored in the reference cell on the basis of a predetermined reference voltage. A voltage compensation unit outputs a compensation reference voltage by controlling the reference voltage in accordance with the output value of the sense amplifier.
摘要:
Disclosed herein is a resistive switching device having an amorphous layer comprised of an insulating silicon-containing material and a conducting material. The amorphous layer may be disposed between two or more electrodes and be capable of switching between at least two resistance states. Circuits and memory devices including resistive switching devices are also disclosed, and a composition of matter involving an insulating silicon-containing material and a conducting material comprising between 5 and 40 percent by molar percentage of the composition is disclosed herein as well. Also disclosed herein are methods for switching the resistance of an amorphous material.
摘要:
Disclosed herein is a resistive switching device having an amorphous layer comprised of an insulating silicon-containing material and a conducting material. The amorphous layer may be disposed between two or more electrodes and be capable of switching between at least two resistance states. Circuits and memory devices including resistive switching devices are also disclosed, and a composition of matter involving an insulating silicon-containing material and a conducting material comprising between 5 and 40 percent by molar percentage of the composition is disclosed herein as well. Also disclosed herein are methods for switching the resistance of an amorphous material.
摘要:
A semiconductor integrated circuit system includes a phase-change line including a first phase-change area constituting a first memory cell and a second phase-change area constituting a second memory cell, a write current providing unit configured to phase-change a selected one of the first and second phase-change areas, and a phase-change compensation unit configured to restore the other of the first and second phase-change areas by compensating for a dummy phase-change caused in the other phase-change area due to a phase-change of the selected phase-change area.
摘要:
Resistance-switching oxide films, and devices therewith, are disclosed. Resistance-switching oxide films, according to certain preferred aspects of the present invention, include at least about 75 atomic percent of an insulator oxide matrix having a conducting material dopant in an amount up to about 25 atomic percent. The matrix and dopant are preferably in solid solution. The insulator oxide matrix may also preferably include about 6 to about 12 atomic percent of a conducting material dopant. According to certain aspects of the present invention, the insulator oxide matrix, the conducting material dopant, or both, may have a perovskite crystal structure. The insulator oxide matrix may preferably include at least one of LaAlO3 and CaZrO3. Preferred conducting material dopants include SrRuO3, CaRuO3, or combinations thereof.
摘要:
A semiconductor integrated circuit system includes a phase-change line including a first phase-change area constituting a first memory cell and a second phase-change area constituting a second memory cell, a write current providing unit configured to phase-change a selected one of the first and second phase-change areas, and a phase-change compensation unit configured to restore the other of the first and second phase-change areas by compensating for a dummy phase-change caused in the other phase-change area due to a phase-change of the selected phase-change area.
摘要:
A nonvolatile memory system and a program method thereof are provided. The nonvolatile memory system includes a nonvolatile memory cell array, an input/output (I/O) control circuit configured to control a program or read operation for the nonvolatile memory cell array; and a controller configured to store an equation representing a resistance-current (R-I) curve for resistance states of memory cells included in the nonvolatile memory cell array, apply an initial program current calculated based on the equation, calculate the equation based in on a resistance of a memory cell subjected to the initial program current, predict a reprogram current based on the equation obtained from the calculation, and control the I/O control circuit.
摘要:
A circuit for generating a reference voltage includes at least one reference cell, a reference cell write driver, a reference cell sense amplifier, and a voltage compensation unit. The reference cell is a variable resistance memory cell. The reference cell write driver writes data to the reference cell. The reference cell sense amplifier reads out the data stored in the reference cell on the basis of a predetermined reference voltage. A voltage compensation unit outputs a compensation reference voltage by controlling the reference voltage in accordance with the output value of the sense amplifier.