摘要:
A data processing system comprises a device and device access circuitry. The device is mapped to a first mapped address region and to a second mapped address region. The device access circuitry, in turn, is operative to access the device in accordance with a first set of memory attributes when addressing the device within the first mapped address region and to access the device in accordance with a second set of memory attributes when addressing the device within the second mapped address region. The first set of memory attributes is different from the second set of memory attributes.
摘要:
A system, circuit and method for improving system-on-chip (SoC) bandwidth performance for high latency peripheral read accesses using a bridge circuit are disclosed. In one embodiment, the SoC includes the bridge circuit, one or more bus masters, at least one high bandwidth bus slave and at least one low bandwidth bus slave that are communicatively coupled via a high bandwidth bus and a low bandwidth bus. Further, the bus masters access the at least one low bandwidth bus slave by issuing an early read transaction request in advance to a scheduled read transaction request. Furthermore, the bridge circuit receives the early read transaction request and fetches data associated with the early read transaction request. In addition, the bridge circuit receives the scheduled read transaction request. The fetched data is then sent to the bus masters upon receiving the scheduled read transaction request.
摘要:
An apparatus for handling anomalies in a hardware system including a master device and at least one slave device coupled with the master device through an interconnect device is provided. The apparatus includes at least one controller operative to receive status information relating to the slave device. The status information is indicative of whether an anomaly is present in the slave device and/or the interconnect device. The controller is operative to generate output response information as a function of the status information relating to the slave device for detecting and/or responding to hardware system anomalies in a manner which reduces a need for resetting the hardware system to return to normal operation.
摘要:
A system, circuit and method for improving system-on-chip (SoC) bandwidth performance for high latency peripheral read accesses using a bridge circuit are disclosed. In one embodiment, the SoC includes the bridge circuit, one or more bus masters, at least one high bandwidth bus slave and at least one low bandwidth bus slave that are communicatively coupled via a high bandwidth bus and a low bandwidth bus. Further, the bus masters access the at least one low bandwidth bus slave by issuing an early read transaction request in advance to a scheduled read transaction request. Furthermore, the bridge circuit receives the early read transaction request and fetches data associated with the early read transaction request. In addition, the bridge circuit receives the scheduled read transaction request. The fetched data is then sent to the bus masters upon receiving the scheduled read transaction request.
摘要:
A data processing system comprises a processor operating according to a first clock signal and a memory operating according to a second clock signal. The data processing system causes the processor to read data from the memory at least in part in response to a signal from first synchronizing circuitry and a signal from second synchronizing circuitry. The first synchronizing circuitry comprises a first storage element that samples a signal synchronized to the second clock signal in combination with a second storage element that samples an output of the first storage element. The first and second storage elements are triggered by inverse transitions in the first clock signal. The second synchronizing circuitry comprises third and fourth storage elements configured in a similar manner, except that they sample a signal synchronized to the first clock signal and are triggered by inverse transitions in the second clock signal.
摘要:
A system and method for optimizing slave transaction ID width based on sparse connection between multiple masters and multiple slaves in a multilayer multilevel interconnect system-on-chip (SOC) architecture are disclosed. In one embodiment, slave transaction ID widths are computed for a first processing subsystem and a second processing subsystem including multiple masters and multiple slaves. Further, a slave transaction ID for each master to any slave in the first processing subsystem and in the second processing subsystem is generated based on the computed slave transaction ID width. Furthermore, sparse connection information between the multiple masters and multiple slaves is determined via a first bus matrix in the first processing subsystem. A first optimized slave transaction ID for each master to any slave in the first processing subsystem is then generated by removing don't care bits in each generated slave transaction ID based on the sparse connection information.
摘要:
A method and apparatus are provided for mapping addresses between one or more slave devices and at least one corresponding master device in a multilayer interconnect system including a plurality of bus matrices for interfacing between the one or more slave devices and the master device. The method and apparatus are operative for receiving an address map corresponding to the system, receiving information regarding connectivity of one or more slave devices through at least one of the bus matrices, determining whether the master device has more than one default slave unit associated therewith, and, when the master device has more than one default slave unit associated therewith, generating first and second address mappings and configuring the system to have no more than one default slave unit per master device.
摘要:
An electronic storage system includes a first cylindrical storage area. The first cylindrical storage area is configured to rotate about an axis. The first cylindrical storage area includes a first storage surface. The storage system further includes a first access head, configured to access information stored on the first storage surface, and a first head arm. The first access head is disposed on the first head arm. A corresponding method, cylindrical storage area, and head access assembly are also provided.
摘要:
A closed loop dynamic interconnect bus allocation method and architecture for a multi layer SoC is disclosed. In one embodiment, a system on chip (SoC) includes multiple masters, multiple slaves, multiple buses, and an interconnect module coupled to multiple masters and multiple slaves via multiple buses. The interconnect module includes an arbiter. The SoC also includes an inner characteristic bus coupled to the plurality of masters, the plurality of slaves and the interconnect module. The interconnect module receives on-chip bus transactions substantially simultaneously from the multiple masters to be processed on one or more of the multiple slaves via the multiple buses. The interconnect module also receives inner characteristic information of the on-chip bus transactions via the inner characteristic bus. Further, the interconnect module allocates the received on-chip bus transactions from the multiple masters to associated one or more of multiple slaves based on the received inner characteristic information.
摘要:
A data processing system comprises a processor operating according to a first clock signal and a memory operating according to a second clock signal. The data processing system causes the processor to read data from the memory at least in part in response to a signal from first synchronizing circuitry and a signal from second synchronizing circuitry. The first synchronizing circuitry comprises a first storage element that samples a signal synchronized to the second clock signal in combination with a second storage element that samples an output of the first storage element. The first and second storage elements are triggered by inverse transitions in the first clock signal. The second synchronizing circuitry comprises third and fourth storage elements configured in a similar manner, except that they sample a signal synchronized to the first clock signal and are triggered by inverse transitions in the second clock signal.