摘要:
Methods and heat treatment apparatus for heating a substrate and any layer carried on the substrate during a bake process. A heat exchange gap between the substrate and a heated support is at least partially filled by a gas having a high thermal conductivity. The high thermal conductivity gas is introduced into the heat exchange gap by displacing a lower thermal conductivity originally present in the heat exchange gap when the substrate is loaded. Heat transfer across the heat exchange gap is mediated by the high thermal conductivity gas.
摘要:
Disclosed is a method and apparatus for mitigation of photoresist line pattern collapse in a photolithography process by applying a gap-fill material treatment after the post-development line pattern rinse step. The gap-fill material dries into a solid layer filling the inter-line spaces of the line pattern, thereby preventing line pattern collapse due to capillary forces during the post-rinse line pattern drying step. Once dried, the gap-fill material is depolymerized, volatilized, and removed from the line pattern by heating, illumination with ultraviolet light, by application of a catalyst chemistry, or by plasma etching.
摘要:
A method of patterning a substrate using a dual-tone development process is described. The patterning method comprises forming a layer of radiation-sensitive material on a substrate, wherein the layer of radiation-sensitive material comprises a dual tone resist. Thereafter, the patterning method comprises performing one or more exposures of the layer of radiation-sensitive material to one or more patterns of radiation, wherein at least one of the one or more exposures comprises using a mask having a dual-tone mask pattern region configured for printing dual tone features and a half-tone mask pattern region configured for printing half-tone features. Furthermore, the half-tone mask pattern region is optimized for use with the dual tone resist.
摘要:
A method for patterning a substrate is described. In particular, the invention relates to a method for double patterning a substrate using dual tone development. Further, the invention relates to optimizing a dual tone development process.
摘要:
The invention can provide a method of processing a substrate using Double-Patterned-Shadow (D-P-S) processing sequences that can include (D-P-S) creation procedures, (D-P-S) evaluation procedures, and (D-P-S) transfer sequences. The (D-P-S) creation procedures can include deposition procedures, activation procedures, de-protecting procedures, sidewall angle (SWA) correction procedure, and Double Patterned (DP) developing procedures.
摘要:
A method and system for patterning a substrate using a dual tone development process is described. The method and system comprise a flood exposure of the substrate to improve process latitude for the dual tone development process.
摘要:
The invention provides a method of processing a substrate using Double-Patterning (D-P) processing sequences and Electric-Field Enhanced Layers (E-FELs). The D-P processing sequences and E-FELs can be used to create lines, trenches, vias, spacers, contacts, and gate structures using a minimum number of etch processes.
摘要:
A method for patterning a substrate is described. In particular, the invention relates to a method for double patterning a substrate using dual tone development. Further, the invention relates to optimizing a dual tone development process.
摘要:
A method for etching a pattern on a surface is disclosed. A mask layer is disposed over a surface and a resist is disposed over the mask layer. The resist is exposed to light through the mask exposing primary pattern and sidelobe regions. The resist is developed and the mask layer is etched according to the resist pattern. A first material is deposited over the mask layer, wherein a gap is formed beneath the material and over the primary pattern region. The material is etched back so that the gap is exposed, and the primary pattern region is etched using the first material as a mask.
摘要:
A patterned structure in a wafer is created using one or more fabrication treatment processes. The patterned structure has a treated and an untreated portion. One or more diffraction sensitivity enhancement techniques are applied to the structure, the one or more diffraction sensitivity enhancement techniques adjusting one or more properties of the patterned structure to enhance diffraction contrast between the treated portion and untreated portions. A first diffraction signal is measured off an unpatterned structure on the wafer using an optical metrology device. A second diffraction signal is measured off the patterned structure on the wafer using the optical metrology device. One or more diffraction sensitivity enhancement techniques are selected based on comparisons of the first and second diffraction signals.