摘要:
A power control system for a turbogenerator which provides electrical power to one or more pump-jack oil wells. When the induction motor of a pump-jack oil well is powered by three-phase utility power, the speed of the pump-jack shaft varies only slightly over the pumping cycle but the utility power requirements can vary by four times the average pumping power. This power variation makes it impractical to power a pump-jack oil well with a stand-alone turbogenerator controlled by a conventional power control system. This power control system comprises a turbogenerator inverter, a load inverter, and a central processing unit which controls the frequency and voltage/current of each inverter. Throughout the oil well's pumping cycle, the central processing unit increases or decreases the frequency of the load inverter in order to axially accelerate and decelerate the masses of the down hole steel pump rods and oil, and to rotationally accelerate and decelerate the masses of the motor rotors and counter balance weights. This allows kinetic energy to be alternately stored in and extracted from the moving masses of the oil well and allows the oil pumping power to be precisely controlled throughout the pumping cycle, resulting in a constant turbogenerator power requirement.
摘要:
A power control system for a turbogenerator which provides electrical power to pump-jack oil well. When the induction motor of a pump-jack is powered by three-phase utility power, the speed of the shaft varies only slightly over the pumping cycle but the utility power requirements can vary by four times the average pumping power. This variation makes it impractical to power a pump-jack oil well with a stand-alone turbogenerator controlled by a conventional power control system. This control system comprises a turbogenerator inverter, a load inverter, and a central processing unit which controls the frequency and voltage/current of each inverter. Throughout the pumping cycle, the processing unit increases or decreases the frequency of the load inverter in order to axially accelerate and decelerate the masses of the down hole pump rods and oil, and to rotationally accelerate and decelerate the motor rotors and counter balance weights. This allows kinetic energy to be alternately stored in and extracted from the moving masses of the oil well and allows the pumping power to be precisely controlled, resulting in a constant turbogenerator power requirement.
摘要:
A power generating unit in accordance with the present invention comprises a pressurized gas source (44) providing pressurized gas containing oxygen to be used in combustion of a fuel; a combustor (42) for providing pressurized gas produced by combustion of a mixture of the pressurized gas provided to the combustor by the pressurized gas source and fuel provided to the combustor by a fuel supply (48); a first turbine (68) driven by pressurized gas produced by the combustor; a gear box (70) driven by the turbine having an output shaft (72); a fuel pump (46) disposed within the fuel supply having a pair of input shafts (64 and 76) for providing pressurized fuel to the combustor in response to rotation of either of the input shafts; a motor (58) coupled to the pressurized gas source having a drive shaft (60) which rotates in response to the pressurized gas applied from the gas source; and a coupling mechanism (62 and 74), coupled to the shafts, for applying driving torque to the fuel pump during rotation of the pressurized gas to the combustor from the input shaft which is rotating at a higher velocity.
摘要:
An airframe power unit for producing a power output in accordance with the invention includes a combustor (16) having a fuel injector (58) which injects fuel into the combustor which is combusted to form a gas stream (18); a turbine (12) driven by the gas stream from the combustor for producing the power output; an air supply (20) for providing pressurized gas containing oxygen blown down from a storage vessel (22) to the combustor which is used in the combusting of the fuel; a valve (24) disposed in the gas supply which controls a rate of supply of gas to the combustor in response to the control signal applied to the valve to cause the turbine to operate with a constant operational characteristic; a control for providing at least one control value (P.sub.S and S.sub.S) with each value specifying a desired operational parameter for use in producing the constant operational characteristic; a sensor (31 or 68) for sensing at least one operational parameter of the turbine; a difference circuit (32, 204, 404 or 504 ) for producing the control signal as a function of a difference of at least one control value and a corresponding sensed operational parameter; and a fuel control (50) for controlling the rate of injection of fuel by the fuel injector into the combustor.
摘要:
A fuel control system (10) for a power unit used for generating power used for operating an airframe in accordance with the invention includes an air supply (18) for supplying pressurized air blown down from a storage vessel (14) to a combustor (16) which generates a gas stream by burning fuel supplied by a fuel supply (32) driving a turbine (50) to produce the power; a pressure sensor (26) coupled to the air supply for producing an analog signal proportional to pressure upstream in the air supply from the combustor; a digital to analog converter (54) having an offset input coupled to a signal proportional to the sensed pressure, a digital input for receiving a digital input signal, and an analog output which varies in proportion to the sum of the signal applied to the offset input and the digital input signal; a fuel control valve (38) contained with the fuel supply which is controlled as a function of the analog output signal of the digital to analog converter; an analog to digital converter (56) having at least one input and at least one output with the analog to digital converter outputting a digital signal proportional to each input signal applied to the at least one input of the analog to digital converter; and a system controller (24), responsive to the at least one output of the analog to digital converter, controlling the fuel with a periodically generated digital input signal applied to the digital to analog converter.
摘要:
A system and method of safely discharging hydraulic fluid from a compressed gas cylinder, comprises filling first and second compressed gas cylinders with compressed gas. A compressed gas dispensing system has a pump that pumps hydraulic oil into the compressed gas cylinders to maintain a desired pressure while gas is dispensed. Gas is dispensed from the first cylinder while hydraulic fluid is pumped into the cylinder to maintain the desired pressure. Once the first cylinder is depleted, the hydraulic oil is discharged from the first cylinder. The process is repeated for the second cylinder. However, the hydraulic oil must be discharged from the second cylinder before the substantial depletion of the gas. To safely discharge the hydraulic oil, compressed gas from the second cylinder is distributed into the first cylinder. Once the second cylinder has reached a safe discharge pressure or volume, the hydraulic fluid is discharged.
摘要:
An aircraft auxiliary power system using a turbine to provide rotational power to a gearbox having coupled to it electric generators and pumps. Between the gearbox and turbine a clutch is provided. The clutch is disengaged when the turbine is started, thus reducing drag on the turbine shaft during starting, and the clutch is engaged after the turbine is started to provide rotational power to the coupled electric generators and pumps.
摘要:
A temperature compensated control system (100) for a hydraulically controlled clutch (18) for controlling a source of rotary power to a load (101) for accelerating the load from a first velocity to a second velocity within a time interval measured from a beginning of the acceleration and ending between first and second times measured from the beginning of the acceleration with the load being variable during the acceleration of the load from the first velocity to the second velocity is disclosed. Gain compensation is provided as a function of temperature of hydraulic fluid within a servo system (110) controlling the clutch. Furthermore, a controller (39) controls the opening of a valve (35) as a function of the sensed temperature during initiation of starting to cause the flow of lubricating fluid into the gearbox to be delayed during the initiation of starting when a sensed temperature is below a set temperature to minimize viscous drag and to cause lubricating fluid to flow immediately into the gearbox when the sensed temperature is above the set temperature.
摘要:
A helical flow compressor used to supply gaseous fuel to a turbogenerator is equipped with an inlet throttling valve. The inlet throttling valve maintains the outlet pressure of the compressor at a preselected value.
摘要:
A liquid fuel pressurization and control system is disclosed which utilizes either a helical flow pump, or a helical flow pump followed by a gear pump, to pressurize liquid fuel to precisely the pressure level required by a turbogenerator's combustor injectors. This eliminates the need to overpressurize the fuel then regulate the fuel pressure down using a flow control valve or a pressure control valve. The shaft torque and shaft speed of the pump are controlled by the turbogenerator's power controller so as to assure that the turbogenerator's speed is precisely controlled (e.g. within ten (10) rpm out of one hundred thousand (100,000) rpm), and that its turbine exhaust temperature is precisely controlled (e.g. within two (2) degrees Fahrenheit out of twelve hundred (1200) degrees Fahrenheit) over the full range of turbogenerator electrical output power. The system also provides cool, high pressure air to assist atomization of the liquid fuel in the injectors utilizing a variable speed helical flow compressor. The system also adjusts the relative fuel flow through the multiple fuel injectors to aid flame stability at low turbogenerator speeds and low output power levels.