摘要:
Communication device employing LDPC (Low Density Parity Check) coding with Reed-Solomon (RS) and/or binary product coding. An LDPC code is concatenated with a RS code or a binary product code (e.g., using row and column encoding of matrix formatted bits) thereby generating coded bits for use in generating a signal that is suitable to be launched into a communication channel. Various ECCs/FECs may be employed including a BCH (Bose and Ray-Chaudhuri, and Hocquenghem) code, a Reed-Solomon (RS) code, an LDPC (Low Density Parity Check) code, etc. and various implementations of cyclic redundancy check (CRC) may accompany the product coding and/or additional ECC/FEC employed. The redundancy of such coded signals as generated using the principles herein are in the range of approximately 20% thereby providing a significant amount of redundancy and a high coding gain. Soft decision decoding may be performed on such coded signal generated herein.
摘要:
Unified binarization for CABAC/CAVLC entropy coding. Scalable entropy coding is implemented in accordance with any desired degree of complexity (e.g., entropy encoding and/or decoding). For example, appropriately implemented context-adaptive variable-length coding (CAVLC) and context-adaptive binary arithmetic coding (CABAC) allow for selective entropy coding in accordance with a number of different degrees of complexity. A given device may operate in accordance with a first level complexity a first time, a second level complexity of the second time, and so on. Appropriate coordination and signaling between an encoder/transmitter device and a decoder/receiver device allows for appropriate coordination along a desired degree of complexity. For example, a variable length binarization module and an arithmetic encoding module may be implemented within an encoder/transmitter device and a corresponding arithmetic decoding module and a variable length bin decoding module may be implemented within a decoder/receiver device allowing for entropy coding along various degrees of complexity.
摘要:
Variable modulation within combined LDPC (Low Density Parity Check) coding and modulation coding systems. Variable modulation encoding of LDPC coded symbols is presented. In addition, LDPC encoding, that generates an LDPC variable code rate signal, may also be performed as well. The encoding can generate an LDPC variable code rate and/or modulation signal whose code rate and/or modulation may vary as frequently as on a symbol by symbol basis. Some embodiments employ a common constellation shape for all of the symbols of the signal sequence, yet individual symbols may be mapped according different mappings of the commonly shaped constellation; such an embodiment may be viewed as generating a LDPC variable mapped signal. In general, any one or more of the code rate, constellation shape, or mapping of the individual symbols of a signal sequence may vary as frequently as on a symbol by symbol basis.
摘要:
True bit level decoding of TTCM (Turbo Trellis Coded Modulation) of variable rates and signal constellations. A decoding approach is presented that allows for decoding on a bit level basis that allows for discrimination of the individual bits of a symbol. Whereas prior art approaches typically perform decoding on a symbol level basis, this decoding approach allows for an improved approach in which the hard decisions/best estimates may be made individually for each of the individual bits of an information symbol. In addition, the decoding approach allows for a reduction in the total number of calculations that need to be performed as well as the total number of values that need to be stored during the iterative decoding. The bit level decoding approach is also able to decode a signal whose code rate and/or signal constellation type (and mapping) may vary on a symbol by symbol basis.
摘要:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.
摘要:
Communication device architecture for in-place constructed LDPC (Low Density Parity Check) code. Intelligent design of LDPC codes having similar characteristics there between allows for a very efficient hardware implementation of a communication device that is operative to perform encoding of respective information bit groups using more than one type of LDPC codes. A switching module can select any one of the LDPC codes within an in-place LDPC code for use by an LDPC encoder circuitry to generate an LDPC coded signal. Depending on which sub-matrices of a superimposed LDPC matrix are enabled or disabled, one of the LDPC matrices from within an in-place LDPC code matrix set may be selected. A corresponding, respective generator matrix may be generated from each respective LDPC matrix. Selection among the various LDPC codes may be in accordance with a predetermined sequence, of based operating conditions of the communication device or communication system.
摘要:
Adaptive loop filtering in accordance with video coding. An adaptive loop filter (ALF) and/or other in-loop filters (e.g., sample adaptive offset (SAO) filter, etc.) may be implemented within various video coding architectures (e.g., encoding and/or decoding architectures) to perform both offset and scaling processing, only scaling processing, and/or only offset processing. Operation of such an ALF may be selective in accordance with any of multiple respective operational modes at any given time and may be adaptive based upon various consideration(s) (e.g., desired complexity level, processing type, local and/or remote operational conditions, etc.). For example, an ALF may be applied to a decoded picture before it is stored in a picture buffer (or digital teacher buffer (DPB)). An ALF can provide for coding noise reduction of a decoded picture, and the filtering operations performed thereby may be selective (e.g., on a slice by slice basis, block by block basis, etc.).
摘要:
Quasi-cyclic LDPC (Low Density Parity Check) code construction is presented that ensures no four cycles therein (e.g., in the bipartite graphs corresponding to the LDPC codes). Each LDPC code has a corresponding LDPC matrix that is composed of square sub-matrices, and based on the size of the sub-matrices of a particular LDPC matrix, then sub-matrix-based cyclic shifting is performed as not only a function of sub-matrix size, but also the row and column indices, to generate CSI (Cyclic Shifted Identity) sub-matrices. When the sub-matrix size is prime (e.g., each sub-matrix being size q×q, where q is a prime number), then it is guaranteed that no four cycles will exist in the resulting bipartite graph corresponding to the LDPC code of that LDPC matrix. When q is a non-prime number, an avoidance set can be used and/or one or more sub-matrices can be made to be an all zero-valued sub-matrix.
摘要翻译:提出了准循环LDPC(Low Density Parity Check,低密度奇偶校验)码构造,其中不存在四个周期(例如,在对应于LDPC码的二分图中)。 每个LDPC码具有由平方子矩阵组成的对应的LDPC矩阵,并且基于特定LDPC矩阵的子矩阵的大小,然后基于子矩阵的循环移位不仅作为子函数执行 - 矩阵大小,也是行和列索引,以生成CSI(循环移位标识)子矩阵。 当子矩阵大小为素数(例如,每个子矩阵的大小为q×q,其中q为质数)时,则保证在对应于LDPC码的LDPC码的所得到的二分图中不存在四个周期 那个LDPC矩阵。 当q是非素数时,可以使用回避集合和/或可以使一个或多个子矩阵成为全零值子矩阵。
摘要:
A method of transmitting data in a cable modem system includes the steps of encoding the data using forward error correction. The data is then encoded with Turbo encoding. The data is then sent to a modulation scheme. The data is then transmitted over a cable channel. The data is then demodulated. The data is then decoded using a Turbo decoder. An inverse of the forward error correction is then applied to the data.
摘要:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.