Abstract:
A microelectronic assembly includes a first microelectronic device electrically coupled with a second microelectronic device via wire bond attachment, the first microelectronic device being structurally coupled with the second microelectronic device via a polymer adhesive, and one or more passive(s) coupled with the first microelectronic device wherein at least one or more passive(s) are enclosed in the polymer adhesive between the first and second microelectronic devices.
Abstract:
An integrated circuit (IC) package stack with a first and second substrate interconnected by solder further includes solder resist openings (SRO) of mixed lateral dimension are spatially varied across an area of the substrates. In embodiments, SRO dimension is varied between at least two different diameters as a function of an estimated gap between the substrates that is dependent on location within the substrate area. In embodiments where deflection in at least one substrate reduces conformality between the substrates, a varying solder joint height is provided from a fixed volume of solder by reducing the lateral dimensioning of the SRO in regions of larger gap relative to SRO dimensions in regions of smaller gap. In embodiments, the first substrate may be any of an IC chip, package substrate, or interposer while the second substrate may be any of another IC chip, package substrate, interposer, or printed circuit board (PCB).
Abstract:
An integrated circuit (IC) package stack with a first and second substrate interconnected by solder further includes solder resist openings (SRO) of mixed lateral dimension are spatially varied across an area of the substrates. In embodiments, SRO dimension is varied between at least two different diameters as a function of an estimated gap between the substrates that is dependent on location within the substrate area. In embodiments where deflection in at least one substrate reduces conformality between the substrates, a varying solder joint height is provided from a fixed volume of solder by reducing the lateral dimensioning of the SRO in regions of larger gap relative to SRO dimensions in regions of smaller gap. In embodiments, the first substrate may be any of an IC chip, package substrate, or interposer while the second substrate may be any of another IC chip, package substrate, interposer, or printed circuit board (PCB).