摘要:
Methods for fabricating array substrates are provided. A method for fabricating an array substrate includes forming a first metal layer over a substrate and then patterned by a first photolithography to forming a gate line, a gate electrode connecting the gate line, and a pad over the substrate. An insulating layer, a semiconductor layer, and an ohmic contact layer are formed over the substrate to cover the gate line, the gate electrode and the pad. The ohmic contact layer, the semiconductor layer, and portions of the insulating layer are patterned by a second photolithography to forming a semiconductor structure over the substrate and a via hole in the insulating layer over the pad to exposing a part of the pad.
摘要:
A photomask for fabricating a thin film transistor (TFT) is disclosed. The photomask includes a translucent layer disposed on a transparent substrate and covering U-shaped and rectangular channel-forming regions of the transparent substrate. First and second light-shielding layers are disposed on the translucent layer and located at the outer and inner sides of the U-shaped channel-forming region, respectively, and third and fourth light-shielding layers are disposed on the translucent layer and located at opposite sides of the rectangular channel-forming region, respectively, to serve as source/drain-forming regions. An end of the third light-shielding layer extends to the first light-shielding layer. A plurality of first light-shielding islands is disposed on the translucent layer and located within the rectangular channel-forming region. A method for fabricating source/drain electrodes of a TFT is also disclosed.
摘要:
A method for manufacturing a pixel structure is provided. A gate and a gate insulating layer are sequentially formed on a substrate. A semiconductor layer and a second metal layer are sequentially formed on the gate insulating layer. The semiconductor layer and the second metal layer are patterned to form a channel layer, a source and a drain by using a patterned photoresist layer formed thereon, wherein the source and drain are disposed on a portion of the channel layer. The gate, channel, source and drain form a thin film transistor. A passivation layer is formed on the patterned photoresist layer, the gate insulating layer and the thin film transistor. Then, the patterned photoresist layer is removed, such that the passivation layer thereon is removed simultaneously to form a patterned passivation layer and the drain is exposed. A pixel electrode is formed on the patterned passivation layer and the drain.
摘要:
A method for fabricating a pixel structure includes following steps. First, a substrate is provided. Next, a first conductive layer is formed on the substrate. Next, a first shadow mask is disposed over the first conductive layer. Next, a laser is applied through the first shadow mask to irradiate the first conductive layer to form a gate. Next, a gate dielectric layer is formed on the substrate to cover the gate. After that, a channel layer, a source and a drain are simultaneously formed on the gate dielectric layer over the gate, wherein the gate, the channel layer, the source and the drain together form a thin film transistor. A patterned passivation layer is formed on the thin film transistor and the patterned passivation layer exposes a part of the drain. Furthermore, a pixel electrode electrically connecting to the drain is formed.
摘要:
A method for fabricating a pixel structure using a laser ablation process is provided. This fabrication method forms a gate, a channel layer, a source, a drain, a passivation layer, and a pixel electrode sequentially by using a laser ablation process. Particularly, the fabrication method is not similar to a photolithography and etching process, so as to reduce the complicated photolithography and etching processes, such as spin coating process, soft-bake, hard-bake, exposure, developing, etching, and stripping. Therefore, the fabrication method simplifies the process and thus reduces the fabrication cost.
摘要:
A method for fabricating a pixel structure is provided. A substrate is provided, and a gate is formed on the substrate. A gate dielectric layer covering the gate is formed on the substrate. A semiconductor layer is formed on the gate dielectric layer. A first shadow mask exposing parts of the semiconductor layer is provided above the semiconductor layer. A laser is irradiated on the semiconductor layer through the first shadow mask to remove parts of semiconductor layer and form a channel layer. A source and a drain are respectively formed on the channel layer at both sides of the gate. A patterned passivation layer which covers the channel layer and exposes the drain is formed. A conductive layer is formed to cover the patterned passivation layer and the drain. The conductive layer is automatically patterned by the patterned passivation layer to form a pixel electrode.
摘要:
A method for fabricating a thin film transistor is provided. A conductive layer is formed on a substrate. A patterned mask is formed on the conductive layer to cover a predetermined thin film transistor (TFT) area, and at least one portion of the conductive layer exposed by the patterned mask are removed. A laser is applied to form a laser hole in the patterned mask to expose a portion of the conductive layer and the laser hole substantially corresponds to a channel region of the predetermined TFT area. The exposed conductive layer is etched to form source and drain electrodes on opposite sides of the channel region.
摘要:
Methods for fabricating array substrates are provided. A method for fabricating an array substrate includes forming a first metal layer over a substrate and then patterned by a first photolithography to forming a gate line, a gate electrode connecting the gate line, and a pad over the substrate. An insulating layer, a semiconductor layer, and an ohmic contact layer are formed over the substrate to cover the gate line, the gate electrode and the pad. The ohmic contact layer, the semiconductor layer, and portions of the insulating layer are patterned by a second photolithography to forming a semiconductor structure over the substrate and a via hole in the insulating layer over the pad to exposing a part of the pad.
摘要:
An exposure apparatus is provided and adapted for exposing a photoresist layer on a layer to form a plurality of strip exposed patterns. The exposure apparatus includes a light source, a lens group and a mask. The lens group is disposed between the photoresist layer and the light source and includes a plurality of strip lens parallel to each other, wherein an overlapping region between any two neighboring strip lens is defined as a lens connecting region, and the other regions excluding the lens connecting regions are defined as lens regions. The mask is disposed between the photoresist layer and the lens group and includes a plurality of shielding patterns, wherein an outline of the shielding patterns corresponds to the strip exposed patterns, each shielding pattern has a strip opening, and an extension direction of the strip openings is substantially parallel to an extension direction of the shielding patterns.
摘要:
A pixel structure fabricating method is provided. A gate is formed on a substrate. A gate insulation layer covering the gate is formed on the substrate. A channel layer, a source, and a drain are simultaneously formed on the gate insulation layer above the gate. The gate, channel layer, source, and drain form a thin film transistor (TFT). A passivation layer is formed on the TFT and the gate insulation layer. A black matrix is formed on the passivation layer. The black matrix has a contact opening above the drain and a color filter containing opening. A color filer layer is formed within the color filter containing opening through inkjet printing. A dielectric layer is formed on the black matrix and the color filter layer. The dielectric layer and the passivation layer are patterned to expose the drain. A pixel electrode electrically connected to the drain is formed.