Abstract:
Process exhaust gas is sampled, and the components of the process exhaust gas are analyzed by a Fourier-transform infrared spectroscope (FT-IR) (26). The analysis result is compared with a reference analysis result obtained from an analysis of process exhaust gas generated in an operation performed under reference process conditions. If the amount of a gas component changes to an amount that is outside a predetermined range set around a reference value obtained from the reference analysis result, a signal indicating a process error is outputted. Instead of the output of the signal indicating a process error, the process conditions can be automatically adjusted.
Abstract:
Process exhaust gas is sampled, and the components of the process exhaust gas are analyzed by a Fourier-transform infrared spectroscope (FT-IR) (26). The analysis result is compared with a reference analysis result obtained from an analysis of process exhaust gas generated in an operation performed under reference process conditions. If the amount of a gas component changes to an amount that is outside a predetermined range set around a reference value obtained from the reference analysis result, a signal indicating a process error is outputted. Instead of the output of the signal indicating a process error, the process conditions can be automatically adjusted.
Abstract:
Process exhaust gas is sampled, and the components of the process exhaust gas are analyzed by a Fourier-transform infrared spectroscope (FT-IR) (26). The analysis result is compared with a reference analysis result obtained from an analysis of process exhaust gas generated in an operation performed under reference process conditions. If the amount of a gas component changes to an amount that is outside a predetermined range set around a reference value obtained from the reference analysis result, a signal indicating a process error is outputted. Instead of the output of the signal indicating a process error, the process conditions can be automatically adjusted.
Abstract:
Process exhaust gas is sampled, and the components of the process exhaust gas are analyzed by a Fourier-transform infrared spectroscope (FT-IR) (26). The analysis result is compared with a reference analysis result obtained from an analysis of process exhaust gas generated in an operation performed under reference process conditions. If the amount of a gas component changes to an amount that is outside a predetermined range set around a reference value obtained from the reference analysis result, a signal indicating a process error is outputted. Instead of the output of the signal indicating a process error, the process conditions can be automatically adjusted.
Abstract:
A partition member with a buffer plate disposed on the top surface thereof is disposed in a region belonging to a surface-to-be-processed of a substrate-to-be-processed held in a processing apparatus. An injector having cross-sectional areas decreasing toward the forward end thereof is disposed in the partition member. The injector has a number of injection holes formed length-wise therein at a constant pitch and in the same bore, whereby a processing gas can be injected very uniformly in the longitudinal direction and diffuse in the partition member. Then the processing gas is passed through vent holes formed in the buffer plate uniformly into the processing chamber. The processing gas can be fed uniformly onto the surface-to-be-processed of the substrate-to-be-processed, and a deposited thin film can have high intra-surface thickness uniformity.
Abstract:
A cleaning solution is used to remove a byproduct derived from a decomposed substance of a process gas containing C and F. The cleaning solution contains 75 wt % N-methyl-2-pyrrolidone, 15 wt % ethylene glycol monobutyl ether, 0.5 wt % surfactant, and 9.5 wt % water. The content of an alkali metal in the cleaning solution is set to be less than 10 ppb.