摘要:
A controller of an engine with a supercharger includes, for each of cylinders, fuel supply system and an ignition plug. The controller includes an electronic control unit that is configured to: (i) set a basic ignition timing depending on an operation state of the engine, (ii) detect, for each cycle, an abnormal combustion generation cylinder in which an abnormal combustion is generated in a supercharged region, (iii) execute a fuel cut to stop a fuel supply by the fuel supply system for the abnormal combustion generation cylinder, (iv) change an ignition timing of the abnormal combustion generation cylinder to expand a crank angle width between a compression top dead center and the basic ignition timing for several cycles after start of the fuel cut, and (v) execute an ignition cut that prohibits a spark from being generated by the ignition plug, further after elapse of the several cycles is executed.
摘要:
A fuel injection control system of an internal combustion engine includes a required injection setting mechanism, a rapid rotational speed change detector, and an injection controller. The required injection setting mechanism calculates a required number of injections and required injection times with regard to a plurality of fuel injections, based on operating conditions of the engine. The rapid rotational speed change detector determines whether the amount of change of the engine speed is equal to or larger than a predetermined value. When it is determined that the amount of change of the engine speed is equal to or larger than the predetermined value, the injection controller controls a fuel injection valve so as to reduce or eliminate differences between the actual injection times and the required injection times. Thereby, even when the engine speed changes rapidly, deteriorations in the driveability and exhaust emissions are prevented.
摘要:
A control apparatus of an internal combustion engine includes a fuel pressure sensor to detect the pressure of the fuel supplied from a fuel pump to an injector; an in-cylinder pressure sensor, which serves as a combustion chamber temperature detecting unit that detects the temperature in the combustion chamber or the parameter depending on the temperature, to detect in-cylinder pressure (combustion chamber pressure); and an ECU that controls to execute the first fuel injection of each cylinder by the injector when the fuel pressure detected by the fuel pressure sensor is not less than a predetermined threshold fuel pressure and when the in-cylinder pressure detected by the in-cylinder pressure sensor is not less than a threshold in-cylinder pressure.
摘要:
In an air-fuel ratio feedback control system including at least one air-fuel ratio sensor downstream of a catalyst converter provided in an exhaust gas passage, an actual air-fuel ratio is controlled in accordance with the output of the downstream-side air-fuel ratio sensor. When at least one of the air-fuel ratio feedback control conditions for the downstream-side air-fuel ratio sensor is not satisfied the controlled air-fuel ratio is made an air-fuel ratio by an open loop control, while all the air-fuel ratio feedback control conditions for the downstream-side air-fuel ratio sensor are satisfied the controlled air-fuel ratio is made the stoichometric ratio (.lambda.=1) in accordance with the output of the downstream-side air-fuel ratio sensor. For a period after all the air-fuel ratio feedback control conditions for the downstream-side air-fuel ratio sensor are satisfied, the control by the output of the downstream-side air-fuel ratio sensor is prohibited, but, the controlled air-fuel ratio is made the stoichiometric ratio (.lambda.=1) by an open loop control or by the output of an upstream-side air-fuel ratio sensor.
摘要:
In a double air-fuel sensor system including two air-fuel ratio sensors upstream and downstream of a catalyst converter provided in an exhaust gas passage, an air-fuel ratio correction amount is calculated in accordance with the outputs of the upstream-side and downstream-side air-fuel ratio sensors, thereby obtaining an actual air-fuel ratio. The speed of renewal of the air-fuel ratio correction amount is higher when output of the downstream-side air-fuel ratio sensor indicates a lean state than when the output of the downstream-side air-fuel ratio sensor indicates a rich state.
摘要:
The output of an exhaust gas sensor disposed in the exhaust system of an engine is amplified by a variable gain amplifier circuit. The gain of the amplifier circuit is controlled so that the peak output voltage thereof is kept constant irrespective of changes in the output of the exhaust gas sensor due to, for example, its deterioration. The output of the exhaust gas sensor is integrated and compared with a reference value by a comparator circuit which generates a reference voltage variable with the output waveform of the exhaust gas sensor whereby a stable feedback control is realized even though the air-fuel ratio of the mixture produced from a carburetor is greatly changed.
摘要:
A control apparatus includes a detection unit that detects a stop request to an engine, a throttle closing control unit that, when the stop request is detected, adjusts an opening amount of a throttle valve to an engine-stop throttle valve opening amount smaller than a current opening amount an engine stop detection unit that detects a stop of the engine, an engine-stop exhaust valve control unit that adjusts an opening/closing characteristic of an exhaust valve of a cylinder that will be placed initially in an intake stroke when the engine is restarted so that, when the opening amount of the throttle valve is adjusted to the engine-stop throttle valve opening amount and a stop of the engine is detected, the exhaust valve has an engine-stop exhaust valve opening/closing characteristic by which a closing timing of the exhaust valve is more delayed than a current closing timing of the exhaust valve.
摘要:
In an exhaust purification system that purifies exhaust from a plurality of cylinder groups of an internal combustion engine, an exhaust passageway (1,51) from each cylinder group is divided into a plurality of passageways (2a, 2b, 52a, 52b/3,53). With regard to one or more of the divided exhaust passageways (3,53), the amount of exhaust passing therethrough is reduced so as to reduce the heat release to the outside from the exhaust as a whole. In this manner, the temperature of exhaust introduced into an exhaust purification device (4,54) is kept at high temperature.
摘要:
An internal combustion engine wherein three-way catalysts are arranged in an exhaust passage of a first cylinder group and an exhaust passage of a second cylinder group and a common NOx storage catalyst is arranged downstream of the three-way catalysts. When the NOx storage catalyst should be raised in temperature, the air-fuel ratio of a part of the cylinders in each cylinder group is made rich and the air-fuel ratio of a part of the cylinders in each cylinder group is made lean to raise the NOx storage catalyst in temperature by the heat of oxidation reaction at the three-way catalysts.
摘要:
According to the invention, an exhaust gas purification device for an engine is provided. The device comprises: a plurality of cylinders, the cylinders being divided into at least two cylinder groups; exhaust branch pipes connected to the cylinder groups at their upstream ends, respectively; a common exhaust pipe connected to the downstream ends of the exhaust branch pipes; and a NOx catalyst positioned in the common exhaust pipe. When a sulfate contamination regeneration process for regenerating the sulfate contamination of the NOx catalyst is performed by controlling the air-fuel ratio of the exhaust gas discharged from one of the cylinder groups to a rich air-fuel ratio and controlling the air-fuel ratio of the exhaust gas discharged from the other cylinder group to a lean air-fuel ratio and a purge gas including fuel vapor is purged into an intake pipe, one of the amount of purge gas and the ratio of the amount of purge gas relative to an amount of fresh air flowing through the intake pipe is controlled on the basis of the concentration of fuel vapor in the purge gas.