Abstract:
Techniques for cooling concentrating solar collector systems are provided. In one aspect, an apparatus for cooling a photovoltaic cell includes a heat exchanger having a metal plate with a bend therein that positions a first surface of the metal plate at an angle of from about 100 degrees to about 150 degrees relative to a second surface of the metal plate, and a plurality of fins attached to a side of the metal plate opposite the first surface and the second surface; a vapor chamber extending along the first surface and the second surface of the metal plate, crossing the bend; and a cladding material between the vapor chamber and the heat exchanger, wherein the cladding material is configured to thermally couple the vapor chamber to the heat exchanger. A photovoltaic system and method for operating a photovoltaic system are also provided.
Abstract:
Techniques for cooling in a data center are provided. In one aspect, a computer equipment rack is provided comprising one or more air inlets; one or more exhaust outlets; and one or more of: an air inlet duct mounted to the computer equipment rack surrounding at least a portion of the air inlets, the air inlet duct having a lateral dimension that approximates a lateral dimension of the computer equipment rack and a length that is less than a length of the computer equipment rack, and an air exhaust duct mounted to the computer equipment rack surrounding at least a portion of the exhaust outlets, the air exhaust duct having a lateral dimension that approximates the lateral dimension of the computer equipment rack and a length that is less than the length of the computer equipment rack.
Abstract:
Techniques for cooling in a data center are provided. In one aspect a computer equipment rack is provided comprising one or more air inlets; one or more exhaust outlets, and one or more of: an air inlet duct mounted to the computer equipment rack surrounding at least a portion of the air inlets, the air inlet duct having a lateral dimension that approximates a lateral dimension of the computer equipment rack and a length that is less than a length of the computer equipment rack, and an air exhaust duct mounted to the computer equipment rack surrounding at least a portion of the exhaust outlets, the air exhaust duct having a lateral dimension that approximates the lateral dimension of the computer equipment rack and a length that is less than the length of the computer equipment rack.
Abstract:
Techniques for improving on data center best practices are provided. In one aspect, an exemplary methodology for analyzing energy efficiency of a data center having a raised-floor cooling system with at least one air conditioning unit is provided. The method comprises the following steps. An initial assessment is made of the energy efficiency of the data center based on one or more power consumption parameters of the data center. Physical parameter data obtained from one or more positions in the data center are compiled into one or more metrics, if the initial assessment indicates that the data center is energy inefficient. Recommendations are made to increase the energy efficiency of the data center based on one or more of the metrics.
Abstract:
A method of detecting the presence of a brush used in a semiconductor wafer cleaner for post-CMP processing is described. Semiconductor wafers are loaded into the wet environment of the wafer cleaner, affixed to a rotatable fixture and rotated at high speed. The rotatable fixture is effectuated by a servo motor linked to a servo controller and a torque monitor. A first torque on the rotating wafer is calculated prior to the start of the brush cleaning cycle. During the brush cleaning cycle, as the brush within the brush cleaner contacts the rotating wafer, the torque on the wafer increases and a second torque is calculated. If, during the brush cleaning cycle, the second torque calculation is substantially equal to the first torque calculation, the brush cleaner is not contacting the wafer and cleaning has not progressed. A tool user can be notified to reaffix the brush within the cleaner. When the second torque calculation is greater than expected, the tool user can be notified that the brush downforce has been improperly set. Inadequate removal of CMP residue is detected before entire wafer lots have passed through an ineffective brush cleaning cycle prior to an inspection point.
Abstract:
Techniques for cooling concentrating solar collector systems are provided. In one aspect, an apparatus for cooling a photovoltaic cell includes a heat exchanger having a metal plate with a bend therein that positions a first surface of the metal plate at an angle of from about 100 degrees to about 150 degrees relative to a second surface of the metal plate, and a plurality of fins attached to a side of the metal plate opposite the first surface and the second surface; a vapor chamber extending along the first surface and the second surface of the metal plate, crossing the bend; and a cladding material between the vapor chamber and the heat exchanger, wherein the cladding material is configured to thermally couple the vapor chamber to the heat exchanger. A photovoltaic system and method for operating a photovoltaic system are also provided.
Abstract:
Techniques for providing high-capacity, re-workable connections in concentrated photovoltaic devices are provided. In one aspect, a lead frame package for a photovoltaic device is provided that includes a beam shield; and one or more lead frame connectors affixed to the beam shield, wherein the lead frame connectors are configured to provide connection to the photovoltaic device when the photovoltaic device is assembled to the lead frame package. A photovoltaic apparatus is also provided that includes a lead frame package assembled to a photovoltaic device. The lead frame package includes a beam shield and one or more lead frame connectors affixed to the beam shield, wherein the lead frame connectors are configured to provide connection to the photovoltaic device.
Abstract:
Techniques for analyzing performance of solar panels and/or cells are provided. In one aspect, a method for analyzing an infrared thermal image taken using an infrared camera is provided. The method includes the following steps. The infrared thermal image is converted to temperature data. Individual elements are isolated in the infrared thermal image. The temperature data for each isolated element is tabulated. A performance status of each isolated element is determined based on the tabulated temperature data. The individual elements can include solar panels and/or solar cells. In another aspect, an infrared diagnostic system is provided. The infrared diagnostic system includes an infrared camera which can be remotely positioned relative to one or more elements to be imaged; and a computer configured to receive thermal images from the infrared camera, via a communication link, and analyze the thermal images.
Abstract:
An assembly for making thickness measurements in a thin film structure. The assembly comprises a chemical-mechanical planarization (CMP) subassembly for effecting topographical changes in a thin film structure; and, a measuring subassembly for detecting the thickness of a thin film structure, the measuring subassembly interposed with the CMP subassembly so that a thickness measurement can be made during and independent of CMP process operations.
Abstract:
An apparatus for conducting heat from a computer component to a heat sink. The invention may include a thermal interface material (TIM). The invention may further include a seal or gasket that at least partially encloses the TIM. The gasket may facilitate retaining the TIM within its sidewall, and thus in place on or near a computer component. Generally, the gasket may be placed between the computer component (or a silicon board or other material upon which the computer component is located) and a heat sink. An insert may be placed within the gasket and define an aperture. The chip seats in the aperture and thus is spatially located with respect to the insert. The TIM abuts both the computer component and a heat sink. A desiccant may be located within the gasket and absorb any moisture diffusing or migrating through the gasket.