Abstract:
The synthesis of thiophene based conducting polymer molecular actuators, exhibiting electrically triggered molecular conformational transitions is reported. Actuation is believed to be the result of conformational rearrangement of the polymer backbone at the molecular level, not simply ion intercalation in the bulk polymer chain upon electrochemical activation. Molecular actuation results from π-π stacking of thiophene oligomers upon oxidation, producing a reversible molecular displacement that leads to surprising material properties, such as electrically controllable porosity and large strains. The existence of active molecular conformational changes is supported by in situ electrochemical data. Single molecule techniques have been used to characterize the molecular actuators.
Abstract:
The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or π-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics such as heterocycles, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state. The present invention also relates to devices and methods for amplifying emissions by incorporating a polymer having an energy migration pathway and/or providing the polymer as a block co-polymer or as a multi-layer.
Abstract:
The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or π-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state. The present invention also relates to devices and methods for amplifying emissions by incorporating a polymer having an energy migration pathway and/or providing the polymer as a block co-polymer or as a multi-layer.
Abstract:
The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).
Abstract:
The present invention relates to fluorescent, semiconductive polymers comprising electron withdrawing groups bonded to the polymer. The invention also relates to a method of detecting analytes comprising contacting the analyte with the fluorescent, semiconductive polymers of the present invention. The invention also relates to light emitting devices, photovoltaic devices, and sensors comprising the fluorescent, semiconductive polymers of the present invention.
Abstract:
The present invention generally relates to organic polymers able to participate in an analyte-recognition process, where an analyte facilitates an energy transfer between an energy donor and an energy acceptor. Certain embodiments of the invention make use of fluorescent conjugated polymers, such as poly(phenylene ethynylene)s and other polymers comprising pi-conjugated backbones. For example, one aspect of the invention provides a fluorescent conjugated polymer and an indicator that can interact with each other in the presence of an analyte to produce an emissive signal. In some cases, the interaction may include energy exchange mechanisms, such as Dexter energy transfer or the strong coupling effect. The interaction of the conjugated polymer and the indicator, in some instances, may be facilitated through specific interactions, such as a protein/carbohydrate interaction, a ligand/receptor interaction, etc. Another aspect of the invention provides for the detection of biological entities, for example, pathogenic bacteria such as E. coli, or viruses such as influenza virus. In some cases, biological recognition elements may be used to determine the biological entity, for instance, carbohydrates that can be used to specifically interact with at least part of the biological entity, such as a protein in the cell membrane of a bacterium. Still other aspects of the invention involve articles, devices, and kits using any of the above-described systems.
Abstract:
The present invention relates to the identification of compounds that are suitable for imaging amyloid deposits in living patients. The invention relates, in part, to a method of imaging amyloid deposits in brain in vivo to allow antemortem diagnosis of Alzheimer's disease. The present invention also relates to therapeutic uses for such compounds, as exemplified by compounds of the formula (1) in which Y is independently S, O, or N and m is 1, 2, or 3.
Abstract:
The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or π-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state. The present invention also relates to devices and methods for amplifying emissions by incorporating a polymer having an energy migration pathway and/or providing the polymer as a block co-polymer or as a multi-layer.
Abstract:
The present invention provides materials, devices, and methods involving new heterocyclic, shape-persistent monomeric units with internal free volume. In some cases, materials the present invention may comprise monomers, oligomers, or polymers that incorporate a heterocyclic, shape-persistent iptycene. The present invention may provide materials having low dielectric constants and improved stability at high operating temperatures due to the electron-poor character of materials. In addition, compositions of the invention may be easily synthesized and readily modified to suit a particular application.
Abstract:
One aspect of the present invention relates to methods for synthesizing milnacipran or congeners thereof. Another aspect of the present invention relates to asymmetric methods for synthesizing enantiomerically enriched milnacipran or congeners thereof. The present invention also relates to methods for synthesizing intermediates useful in the non-asymmetric or asymmetric methods for synthesizing enantiomerically enriched milnacipran or congeners thereof.