摘要:
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 Ωm or less.
摘要:
A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.
摘要:
Methods to control and prevent polymer films from buckling are provided. Buckled morphologies are created by thermally cycling or mechanically compressing a substrate such as poly(dimethylsiloxane) (PDMS) coated with a polyelectrolyte multilayer film. By varying the dimensions of the surface topography relative to the buckling wavelength (e.g., pattern size is less than, equal to, and greater than the buckling wavelength) the orientation and the local morphology of the buckled films is controlled. Based on the information obtained, we demonstrate how to alleviate the unavoidable buckling by incorporating nanoparticles into the film. In addition, we studied the effect of the silica layer that results from oxygen plasma treatment and the critical temperature for permanent film buckling.
摘要:
Methods to control and prevent polymer films from buckling are provided. Buckled morphologies are created by thermally cycling or mechanically compressing a substrate such as poly(dimethylsiloxane) (PDMS) coated with a polyelectrolyte multilayer film. By varying the dimensions of the surface topography relative to the buckling wavelength (e.g., pattern size is less than, equal to, and greater than the buckling wavelength) the orientation and the local morphology of the buckled films is controlled. Based on the information obtained, we demonstrate how to alleviate the unavoidable buckling by incorporating nanoparticles into the film. In addition, we studied the effect of the silica layer that results from oxygen plasma treatment and the critical temperature for permanent film buckling.
摘要:
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 Ωm or less.
摘要翻译:排列和分散的碳纳米管的阵列包括细长的拉伸体,其包括从主体的第一端延伸穿过其中的多个通道,其中通道在横向上具有至少约100,000通道/ mm 2的数密度 横截面的身体。 在每个通道中设置多个碳纳米管,并且碳纳米管沿着用于阵列的通道的长度被充分地分散和排列,以包括每个通道的平均电阻率为约9700Ωm或更小。
摘要:
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 Ωm or less.
摘要翻译:排列和分散的碳纳米管的阵列包括细长的拉伸体,其包括从主体的第一端延伸穿过其中的多个通道,其中通道在横向上具有至少约100,000通道/ mm 2的数密度 横截面的身体。 在每个通道中设置多个碳纳米管,并且碳纳米管沿着用于阵列的通道的长度被充分地分散和排列,以包括每个通道的平均电阻率为约9700&OHgrm以下。
摘要:
Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
摘要:
A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.
摘要:
Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
摘要:
Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.