Abstract:
A method for calculating or estimating or approximating one or more values representing parameters of a patient includes the step of interpolating or extrapolating of at least one later value of a first parameter taking into account at least one earlier value of the first parameter, at least one earlier and at least one later value of a second parameter, and a mathematical relation between the first and the second parameter. An apparatus, a blood treatment device, a digital storage device, a computer program product, and a computer program are also described.
Abstract:
The present invention relates to a method for evaluating a value representing the mass or the concentration of a substance comprised by a tissue or a bodily fluid of a patient, the method including the steps of a) determining a relation between one or more calculated or measured value(s) reflecting the mass or the concentration and a distribution space of the patient or an approximation thereof, and b) assessing whether the relation fulfils a criterion. The present invention further relates to systems and computer programs for performing this method.
Abstract:
The present invention relates to a method for controlling a filtration rate during treatment of a body fluid, e.g., during hemofiltration or dialysis, comprising the steps of defining a target relation, or a development during dialysis thereof, between one or more calculated or measured value(s) reflecting the mass, concentration, or the volume of a substance comprised by a patient's tissue or bodily fluid, and one or more calculated or measured value(s) reflecting a patient's distribution space or an approximation thereof; during dialysis repeatedly calculating or measuring value(s) reflecting the mass, concentration or the volume of the substance and/or reflecting the distribution space or an approximation thereof, and determining the relation therebetween at least once; and controlling the filtration rate of the body fluid treatment device such that the determined relation is or approaches the target relation. It also relates to systems for conducting the method, and related computer-readable storage media.
Abstract:
The present invention relates to a method for calculating or approximating a value representing the relative blood volume (RBV) at a certain point of time, or a value representing the refilling volume of a patient that may be observed or found during or due to a blood treatment of the patient, the method involving considering one or more calculated or measured value(s) reflecting an overhydration level of the patient or an approximation thereof. It relates further to an apparatus and a device for carrying out the present invention, a blood treatment device, digital storage means, a computer program product, and a computer program.
Abstract:
The subject matter is a patient supporting device for supporting a patient during a medical treatment, in particular a dialysis treatment, and a treatment apparatus with such a patient supporting device, and a corresponding method for controlling and/or regulating a medical treatment device, in particular a dialysis device, using such a patient supporting device.
Abstract:
The present invention relates to a method for assessing a patient's sensitivity to fluid removal from the patient's vascular system or to fluid replacement or addition with regard to the patient's hydration state, the method comprising the step of determining a value reflecting the distribution of fluid between at least two distribution spaces of the body of the patient or changes thereof from measured or calculated values, and assessing whether the value fulfils at least one criterion. It also relates to a controller, an apparatus, a device, a digital storage device, a computer program product, and a computer program.
Abstract:
A method for calculating or estimating or approximating one or more values representing parameters of a patient includes the step of interpolating or extrapolating of at least one later value of a first parameter taking into account at least one earlier value of the first parameter, at least one earlier and at least one later value of a second parameter, and a mathematical relation between the first and the second parameter. An apparatus, a blood treatment device, a digital storage device, a computer program product, and a computer program are also described.
Abstract:
The subject matter is a patient supporting device for supporting a patient during a medical treatment, in particular a dialysis treatment, and a treatment apparatus with such a patient supporting device, and a corresponding method for controlling and/or regulating a medical treatment device, in particular a dialysis device, using such a patient supporting device.
Abstract:
The present invention relates to a method for controlling a filtration rate during treatment of a body fluid, e.g., during hemofiltration or dialysis, comprising the steps of defining a target relation, or a development during dialysis thereof, between one or more calculated or measured value(s) reflecting the mass, concentration, or the volume of a substance comprised by a patient's tissue or bodily fluid, and one or more calculated or measured value(s) reflecting a patient's distribution space or an approximation thereof; during dialysis repeatedly calculating or measuring value(s) reflecting the mass, concentration or the volume of the substance and/or reflecting the distribution space or an approximation thereof, and determining the relation therebetween at least once; and controlling the filtration rate of the body fluid treatment device such that the determined relation is or approaches the target relation. It also relates to systems for conducting the method, and related computer-readable storage media.
Abstract:
The invention relates to a detector for measuring scattered light in liquids having a housing, a transparent, flexible tube for transporting liquid through the housing, a light emitter, and a light detector. Two parallel surfaces are formed in the housing, between which the tube is arranged such that two opposing tube walls are formed in a planar parallel manner. The light emitter is arranged in such a way that the optical axis thereof is perpendicular to the parallel surfaces of the first tube wall, and the light detector is adjacent to the light emitter, the optical axes of the light emitter and light detector forming an angle smaller than 90°. The invention also relates to a method for detecting the presence of blood and for the quantitative determination of biological marker substances, especially bilirubin, in solution, and to a device for treating blood containing the detector.