摘要:
Age-hardening nickel-chromium-iron-titanium-aluminum wrought alloy with very good wear resistance and at the same time good creep strength, good high-temperature corrosion resistance and good processability, with (in mass-%)>18 to 26% chromium, 1.5 to 3.0% titanium, 0.6 to 2.0% aluminum, 7.0 to 40% iron, 0.005 to 0.10% carbon, 0.0005 to 0.050% nitrogen, 0.0005 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.020% oxygen, max. 0.70% silicon, max. 2.0% manganese, max. 0.05% magnesium, max. 0.05% calcium, max. 0.5% molybdenum, max. 0.5% tungsten, max. 0.2% niobium, max. 0.5% copper, max. 0.5% vanadium, if necessary 0 to 15% Co, if necessary 0 to 0.20% Zr, if necessary 0.0001 to 0.008% boron, wherein optionally the following elements may also be contained in the alloy: Y 0-0.20% and/or La 0-0.20% and/or Ce 0-0.20% and/or Ce mixed metal 0-0.20% and/or Hf 0-0.20% and/or Ta 0-0.60%, remainder nickel and the usual unavoidable impurities, wherein the relationship Cr+Fe+Co≧25% must be satisfied in order to achieve good processability and the relationship fh≧0 with fh=6.49+3.88 Ti+1.36 Al−0.301 Fe+(0.759−0.0209 Co)Co−0.428Cr−28.2C, has to be satisfied in order that an adequate strength is achieved at higher temperatures, wherein Ti, Al, Fe, Co, Cr and C are the concentrations of the elements in question in mass-% and fh is expressed in %.
摘要:
The invention relates to an alloy comprising (in mass %) Ni 33-35%, Cr 26-28%, Mo 6-7%, Cu 0.5-1.5%, Mn 1.0-4%, Si max. 0.1%, Al 0.01-0.3%, C max. 0.01%, N 0.1-0.25%, B 0.001-0.004%, SE>0 to 1%, and Fe remainder, including unavoidable impurities.
摘要:
A method for producing a metal film composed of an alloy having more than 50% nickel (a) melts the alloy in amounts of more than one ton in a vacuum induction furnace, or openly in an induction or arc furnace, followed by treatment in a VOD or VLF installation, (b) the alloy is cast into blocks, electrodes or as continuous casting to form a pre-product, (c) the pre-product is annealed if necessary at temperatures between 800° C.-1350° C. for 1-300 hours under air or protective gas, and (d) hot rolled between 1300° C.-600° C. to reduce the thickness of the starting material by a factor of 1.5-200, such that the pre-product has a thickness of 1-100 mm after the rolling and is not recrystallized, recovered, and/or is (dynamically) recrystallized having a grain size less than 300 μm, (e) the pre-product is pickled, (f) then cold worked to produce a film with a degree of deformation greater than 90% to a final thickness of 10-600 μm, (g) the film is cut into strips of 5-300 mm after the cold working, (h) the film strips are coated with a ceramic powder loosely or by an adhesive or by an oxide dissolved in alcohol or covered with a separating film and, if necessary, dried, (i) the film strips are wound annularly onto one or more mandrels or one or more sleeves, wherein the inner and the outer end are each spot-welded or clamped, (j) the annularly wound film strips are annealed under protective gas at temperatures between 600° C.-1200° C. for 1 min to 300 h, (k) wherein the annealed film-like material is recrystallized after the annealing and has a large proportion of cubic texture.
摘要:
The invention relates to a nickel-chromium alloy comprising (in wt.-%) 29 to 37% chromium, 0.001 to 1.8% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 1.00% titanium and/or 0.00 to 1.10% niobium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 12% carbon, 0.001 to 0.050% nitrogen, 0.001 to 0.030% phosphorus, 0.0001 to 0.020% oxygen, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al≧30 (2a) and Fp≦39.9 (3a) with Fp=Cr+0.272*Fe+2.36*Al+2.22*Si+2.48*Ti+0.374*Mo+0.538*W−11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
摘要翻译:本发明涉及一种镍 - 铬合金,其包含29-37%的铬,0.001-1.8%的铝,0.10-7.0%的铁,0.001-0.50%的硅,0.005-2.0%的锰,0.00- 1.00重量% %的钛和/或0.00〜1.10%的铌,0.0002〜0.05%的镁和/或钙,0.005〜12%的碳,0.001〜0.050%的氮,0.001〜0.030%的磷,0.0001〜0.020%的氧,不超过 0.010%的硫,不超过2.0%的钼,不超过2.0%的钨,剩余的镍和通常的工艺相关杂质,其中必须满足以下关系:Cr +Al≥30(2a)和Fp≦̸ 39.9( 3a)与Fp = Cr + 0.272 * Fe + 2.36 * Al + 2.22 * Si + 2.48 * Ti + 0.374 * Mo + 0.538 * W-11.8 * C(4a),其中Cr,Fe,Al,Si,Ti,Mo ,W和C是以质量%计的各元素的浓度。
摘要:
A nickel-based alloy, consisting of (in mass %) 1.5-3.0% Si, 1.5-3.0% Al, and >0.1-3.0% Cr, where Al+Si+Cr is ≧4.0 and ≦8.0 for the contents of Si, Al, and Cr in %; 0.005-0.20% Fe, 0.01-0.20% Y, and
摘要:
A method for producing a metal film from an alloy having more than 50% nickel includes the following steps: (a) the alloy is melted in volumes of more than one ton in a vacuum induction furnace, or open in an induction or arc furnace, followed by treatment in a VOD or VLF system, (b) the alloy is then poured off in blocks, electrodes or as continuous casting to form a pre-product, followed by single or multiple re-melting by VAR and/or ESU (c) the pre-product is then annealed between 800 and 1350° C. for 1-300 hours under air or protection gas, (d) the pre-product is then hot-formed between 1300 and 600° C. to reduce the thickness of the input material by the factor 1.5-200, such that the pre-product has a thickness of 1-100 mm after the forming and is not recrystallized, recovered, and/or (dynamically) recrystallized having a grain size of smaller than 300 μm, (e) the pre-product is then pickled, (f) the pre-product is then cold-formed to produce a film having an end thickness of 10-600 μm, having a deformation ratio of greater than 90%, (g) the film is then cut into strips of 5-300 mm following the cold-forming, (h) the film strips are then annealed under protection gas between 600 and 1200° C. for 1 second to 5 hours in a continuous furnace, (i) wherein the annealed, film-like material is recrystallized after the annealing and has a high proportion of cubic texture.
摘要:
A nickel-molybdenum-iron alloy with high corrosion resistance with respect to reducing media at high temperatures, consisting of (in % by mass): 61 to 63% nickel, 24 to 26% molybdenum, 10 to 14% iron, 0.20 to 0.40% niobium, 0.1 to 0.3% aluminum, 0.01 to 1.0% chromium, 0.1 to 1.0% manganese, at most 0.5% copper, at most 0.01% carbon, at most 0.1% silicon, at most 0.02% phosphorus, at most 0.01% sulphur, at most 1.0% cobalt, and further smelting-related impurities.
摘要:
Iron-nickel-chromium-silicon alloy having (in % by weight) 34 to 42% nickel, 18 to 26% chromium, 1.0 to 2.5% silicon, and additives of 0.05 to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.01 to 0.14% carbon, 0.01 to 0.14% nitrogen, max. 0.01% sulfur, max. 0.005% B, remainder iron and the usual impurities resulting from the production process.
摘要:
A nickel-chromium-aluminum-iron alloy includes (in wt.-%) 24 to 33% chromium, 1.8 to 4.0% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 0.60% titanium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 0.12% carbon, 0.001 to 0.050% nitrogen, 0.0001 to 0.020% oxygen, 0.001 to 0.030% phosphorus, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al≧28 (2a) and Fp≦39.9 (3a) with Fp=Cr+0.272* Fe+2.36*Al+2.22 *Si+2.48*Ti+0.374*Mo+0.538*W−11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
摘要翻译:镍 - 铬 - 铝 - 铁合金包括(重量%)24-33%铬,1.8-4.0%铝,0.10-7.0%铁,0.001-0.50%硅,0.005-2.0%锰,0.00-0.60 %钛,0.0002〜0.05%的镁和/或钙,0.005〜0.12%的碳,0.001〜0.050%的氮,0.0001〜0.020%的氧,0.001〜0.030%的磷,不超过0.010%的硫,不超过2.0 %钼,不超过2.0%的钨,剩余的镍和通常的工艺相关杂质,其中必须满足以下关系:Cr +Al≥28(2a)和Fp≦̸ 39.9(3a),其中Fp = Cr + 0.272 * Fe + 2.36 * Al + 2.22 * Si + 2.48 * Ti + 0.374 * Mo + 0.538 * W-11.8 * C(4a)其中Cr,Fe,Al,Si,Ti,Mo,W和C是 各元素的质量%。
摘要:
Age-hardening nickel-chromium cobalt-titanium-aluminum wrought alloy with very good wear resistance combined with very good creep strength, good high-temperature corrosion resistance and good processability, the alloy including (in % by mass)>18 to 26% chromium, 1.5 to 3.0% titanium, 0.6 to 2.0% aluminum, 5.0 to 40% cobalt, 0.005 to 0.10% carbon, 0.0005 to 0.050% nitrogen, 0.0005 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.020% oxygen, max. 0.70% silicon, max. 2.0% manganese, max. 0.05% magnesium, max. 0.05% calcium, max. 0.5% molybdenum, max. 0.5% tungsten, max. 0.2% niobium, max. 0.5% copper, max. 0.5% vanadium, optionally 0 to 20% Fe, optionally 0 to 0.20% Zr, optionally 0.0001 to 0.008% boron, optionally 0-0.20% Y, La, Ce, Ce mixed metal, and/or Hf, and/or 0-0.60% Ta, remainder nickel and the conventional process-related impurities are adjusted in contents of max. 0.002% Pb, max. 0.002% Zn, max. 0.002% Sn, wherein the nickel content is greater than 35%, wherein the relationship Cr+Fe+Co≧25% (1) has to be satisfied in order to achieve good wear resistance, and the relationship fh≧0 (2a), where fh=6.49+3.88 Ti+1.36 Al−0.301 Fe+(0.759−0.0209 Co) Co−0.428 Cr−28.2 C, (2) has to be satisfied in order that an adequate strength at higher temperatures is provided, wherein Ti, Al, Fe, Co, Cr and C are the concentration of the elements in question in % by mass and fh is given in %.