摘要:
In advanced semiconductor devices, spacer elements may be formed on the basis of a multi-station deposition technique, wherein a certain degree of variability of the various sub-layers of the spacer materials, such as a different thickness, may be applied in order to enhance etch conditions during the subsequent anisotropic etch process. Consequently, spacer elements of improved shape may result in superior deposition conditions when using a stress-inducing dielectric material. Consequently, yield losses due to contact failures in densely packed device areas, such as static RAM areas, may be reduced.
摘要:
Amorphous carbon material may be deposited with superior adhesion on dielectric materials, such as TEOS based silicon oxide materials, in complex semiconductor devices by applying a plasma treatment, such as an argon treatment and/or forming a thin adhesion layer based on silicon dioxide, carbon-doped silicon dioxide, prior to depositing the carbon material. Consequently, the hard mask concept based on amorphous carbon may be applied with an increased degree of flexibility, since a superior adhesion may allow a higher degree of flexibility in selecting appropriate deposition parameters for the carbon material.
摘要:
Contact elements may be formed on the basis of a mask layer having openings, the width of which may be reduced by etching or deposition, thereby extending the process margins for a given lithography technique. Consequently, yield losses caused by short circuits in the contact level of sophisticated semiconductor devices may be reduced.
摘要:
In sophisticated semiconductor devices, strain-inducing materials having a reduced dielectric strength or having certain conductivity, such as metal nitride and the like, may be used in the contact level in order to enhance performance of circuit elements, such as field effect transistors. For this purpose, a strain-inducing material may be efficiently encapsulated on the basis of a dielectric layer stack that may be patterned prior to forming the actual interlayer dielectric material in order to mask sidewall surface areas on the basis of spacer elements.
摘要:
In sophisticated semiconductor devices, strain-inducing materials having a reduced dielectric strength or having certain conductivity, such as metal nitride and the like, may be used in the contact level in order to enhance performance of circuit elements, such as field effect transistors. For this purpose, a strain-inducing material may be efficiently encapsulated on the basis of a dielectric layer stack that may be patterned prior to forming the actual interlayer dielectric material in order to mask sidewall surface areas on the basis of spacer elements.
摘要:
Amorphous carbon material may be deposited with superior adhesion on dielectric materials, such as TEOS based silicon oxide materials, in complex semiconductor devices by applying a plasma treatment, such as an argon treatment and/or forming a thin adhesion layer based on silicon dioxide, carbon-doped silicon dioxide, prior to depositing the carbon material. Consequently, the hard mask concept based on amorphous carbon may be applied with an increased degree of flexibility, since a superior adhesion may allow a higher degree of flexibility in selecting appropriate deposition parameters for the carbon material.
摘要:
A silicon dioxide material may be provided in sophisticated semiconductor devices in the form of a double liner including an undoped silicon dioxide material in combination with a high density plasma silicon dioxide, thereby providing reduced dependency on pattern density. In some illustrative embodiments, the silicon dioxide double liner may be used as a spacer material and as a hard mask material in process strategies for incorporating a strain-inducing semiconductor material.
摘要:
In advanced semiconductor devices, spacer elements may be formed on the basis of a multi-station deposition technique, wherein a certain degree of variability of the various sub-layers of the spacer materials, such as a different thickness, may be applied in order to enhance etch conditions during the subsequent anisotropic etch process. Consequently, spacer elements of improved shape may result in superior deposition conditions when using a stress-inducing dielectric material. Consequently, yield losses due to contact failures in densely packed device areas, such as static RAM areas, may be reduced.
摘要:
A silicon dioxide material may be provided in sophisticated semiconductor devices in the form of a double liner including an undoped silicon dioxide material in combination with a high density plasma silicon dioxide, thereby providing reduced dependency on pattern density. In some illustrative embodiments, the silicon dioxide double liner may be used as a spacer material and as a hard mask material in process strategies for incorporating a strain-inducing semiconductor material.