Abstract:
A catalyst system may be regenerated by a method that includes exposing the catalyst system to a de-coking treatment. The de-coking treatment may include three consecutive treatment conditions including a first treatment condition, a second treatment condition, and a third treatment condition. The catalyst system may include a metathesis catalyst and a cracking catalyst. The metathesis catalyst may include tungsten oxide and silica carrier, and the cracking catalyst may include ZSM-5 zeolite.
Abstract:
An exhaust system for a diesel engine is disclosed. The exhaust system may include a diesel oxidation catalyst (DOC) configured to receive exhaust gases from the engine and oxidize hydrocarbons in the exhaust gases and a passive NOx adsorber (PNA) downstream from the DOC and configured to store NOx from the exhaust gases at temperatures up to 150° C. A selective catalytic reduction (SCR) system may be downstream from the PNA and configured to reduce NOx in the exhaust gases. The PNA may be configured to release the stored NOx at temperatures above 200° C. The DOC upstream of the PNA may reduce the amount of N2O that is generated by the PNA by oxidizing hydrocarbons before they reach the PNA.
Abstract:
There are provided methods for the valorization of carbohydrates. The methods comprise reacting a fluid comprising at least one carbohydrate with at least one metal catalyst or at least one metal catalytic system in a fluidized bed reactor so as to obtain at least one organic acid or a derivative thereof.
Abstract:
Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
Abstract:
The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
Abstract:
There is provided a catalyst for a water gas shift reaction in a hydrogen gas which is able to effectively remove CO in the hydrogen gas within a broader temperature range. Such a catalyst for the water gas shift reaction is characterized in that a metal oxide carrier supports at least platinum. The catalyst can be used for removing carbon monoxide in the hydrogen gas. Particularly, such a catalyst can be used in the water gas shift reaction for removing carbon monoxide in a reformed gas in a fuel cell generation system.
Abstract:
A bi-laterally surfaced substrate in which the first surface consists of one or more than one of cerium oxide, aluminum oxide, tin oxide manganese oxide, copper oxide, cobalt oxide, nickel oxide, praseodymium oxide, terbium oxide, ruthenium, rhodium, palladium, silver, iridium, platinum and gold and the second surface consists of one or more than one of ruthenium, rhodium, palladium, silver, iridium, platinum and gold and micro channel micro component reactors including such substrates in a predetermined formed shape and methods for making the same utilizing a thermal spray on one side and a physical deposition process on the other side.
Abstract:
This invention discloses an adsorbent ideal or the removal of nitrogen oxides (NO.sub.x : nitrogen monoxide and nitrogen dioxide), particularly nitrogen dioxide, from an exhaust gas containing the nitrogen oxides at low concentrations and a method for efficient removal of nitrogen oxides, particularly nitrogen dioxide, from an exhaust gas containing the nitrogen oxides at low concentrations by the use of the adsorbent. The adsorbent either comprises at least one noble metal selected from the group consisting of Pt, Au, Ru, Rh, and Pd and/or a compound thereof supported on a carrier or comprises the noble metal component and an oxide of at least one heavy metal selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn and Pb, which may be supported on the carrier, if necessary.
Abstract:
An improved method for the preparation of a silver catalyst in which a cyclic tetraamine is employed as a dispersing agent for the silver compound. Such catalysts are useful in the preparation of ethylene oxide by the direct oxidation of ethylene.
Abstract:
This invention relates to processes for catalytically oxidizing organic compounds (for example, methane, ethane, propylene and carbon monoxide), catalytically reducing oxides of nitrogen with a reducing fuel as well as for the production of methane by the steam reforming of naphtha and naphtha distillates. The catalyst used in such processes consists essentially of an inert, rigid, porous refractory honeycomb structure coated with a mixture or alloy of platinum, rhodium and a base metal in which rhodium constitutes from 1 - 50 weight % and the base metal constitutes from 0.01 to 25 weight % of the total metal content.