Abstract:
An apparatus and method for detecting defects in the magnetic medium of a disk drive system includes sampling the output signal of the read channel of the system to provide a sampled output signal. In one embodiment, the sampled output signals from the read channel is squared. A delayed sampled output signal is also provided. The squared sampled output signal is summed with the delayed squared output signal. The square of the expected value of the sum of the squared sampled output signal and the delayed squared output signal is subtracted from the sum to provide a difference output signal. A threshold detector determines when the difference output signal of the subtraction means exceeds a predetermined threshold to provide an output signal indicative of a defect in the medium. One threshold detector determines when the absolute value of the difference output signal exceeds a predetermined threshold value. Another threshold detector determines when the difference output signal of the subtraction means exceeds either a predetermined upper threshold value or a predetermined lower value. The expected value may be a constant. In another embodiment, the absolute value of the sampled output signal and a delayed sampled absolute-value output signal are summed together.
Abstract:
A read channel detector circuit for recovery of digital data from a readback waveform produced by a magnetic recording head is disclosed. The detector circuit includes a forward filter for slimming the rising edge and slurring the falling edge of an isolated input magnetic pulse. Quantized feedback techniques are then used to produce a compensating waveform which is substantially complimentary to the slurred falling edge of the isolated magnetic pulse. The complimentary waveform is added to the forward filter output to produce a waveform which is substantially a step function. This step function corresponds to a single digital transition, either positive-going or negative-going in a digital output sequence. The equalized waveform is then limited by a comparator to produce the desired digital output sequence. By slimming only the rising edge of the input magnetic pulse and by using quantized feedback techiques, the overall bandwidth of the system is conserved resulting in an increased binary signalling capability without substantial intersymbol interference.
Abstract:
A disk drive is disclosed comprising a disk, a head actuated over the disk, a preamp, and an interconnect for coupling the head to the preamp. The interconnect comprises a first transmission line stacked with a second transmission line, and a dielectric between the first transmission line and second transmission line. The transmission lines form an approximation of at least one inductor/capacitor ladder network and an approximation of at least one inductor/capacitor lattice network. The lattice network comprises a first leg and a second leg, and a cross-over hub for interconnecting the first leg and the second leg.
Abstract:
A disk drive comprising a disk, and a head actuated over the disk, the head comprising a read element and a write element. The disk drive further comprises a preamp and an interconnect comprising a first transmission line and a second transmission line coupling the head to the preamp. A compensation network is disclosed operable to compensate for an impedance discontinuity in the first and second transmission lines, the compensation network comprising a first trace and a second trace connected in parallel with the first and second transmission lines, wherein a shape of the first and second traces varies to form at least a first capacitor.
Abstract:
Disclosed herein are embodiments directed to a head gimbal assembly including a novel suspension assembly that includes a flexure tail with a first plurality of apertures in its structural layer. Each of the first plurality of apertures underlies a first trace but not a second trace. Each of a second plurality of apertures in the structural layer underlies a second trace but not the first trace. Each of the first plurality of apertures includes a corresponding region of maximum width, and each of the second plurality of apertures includes a corresponding region of maximum width, as measured in the width direction. None of the corresponding regions of maximum width of the first plurality of apertures is disposed in an overlapping position along the long axis as any of the corresponding regions of maximum width of the second plurality of apertures.
Abstract:
A data storage system achieves improved bandwidth efficiency using a modulated recording signal, channel linearization, and a compressor circuit for compressing peak amplitude of the recording signal. In a preferred embodiment, quadrature amplitude modulation and demodulation is utilized. Another embodiment achieves improved bandwidth efficiency using a recording medium having a substantially rectangular magnetic flux versus magnetic field intensity hysteresis characteristic and a substantially rectangular Kerr rotation versus magnetic field intensity hysteresis characteristic. Yet another embodiment achieves improved bandwidth efficiency using a storage medium having a substantially abrupt flux transition.
Abstract:
The invention is a conversion kit for converting a two-wheeled motorcycle into a three-wheeled motorcycle providing for increasing both the lateral and longitudinal stability of a conventional motorcycle while maintaining the conventional positioning of the motorcycle rider. The invention replacing the front wheel with a pair of opposed wheels connected to the conventional front fork by an elongated kit frame. The kit frame is narrow and does not provide for enclosing the driver within the frame. The elongated frame provides for greater longitudinal stability and the opposed front wheels provide for greater lateral stability. The kit frame is directly mounted to the conventional motorcycle front fork, requiring limited modification to the conventional motorcycle and eliminating special connectors required by prior designs.
Abstract:
A read channel detector circuit for recovery of digital data from a readback waveform produced by a magnetic recording head is disclosed. The detector circuit includes a forward filter for slimming the rising edge and slurring the falling edge of an isolated input magnetic pulse. Quantized feedback techniques are then used to produce a compensating waveform which is substantially complimentary to the portion of the filtered waveform occurring after T.sub.min. The complimentary waveform is then added to the forward filter output to produce a waveform which is substantially a step function. This step function corresponds to a single digital transition, either positive-going or negative-going in a digital output sequence. The equalized waveform is then limited by a comparator to produce the desired digital output sequence. By slimming only the rising edge of the input magnetic pulse and by using quantized feedback techniques, the overall bandwidth of the system is conserved resulting in an increased binary signalling capability without substantial intersymbol interference.
Abstract:
A pulse improvement circuit for a magnetic readback system produces a data representative signal having symmetrical, equal-amplitude pulses of limited time widths. The circuit includes an equalizer made in accordance to a final transfer function produced as a result of a mathematical convolution of first and second transfer functions. The first transfer function is based on the theory of a matched filter for receiving a signal having data representative and non-white noise pulses contained therein to produce a filter signal having maximum signal to noise ratio. The second transfer function is based on the theory of a Papoulis window function for slimming the pulses contained in the filter signal. A specific circuit implementation of the final transfer function is an eight-pole, inductor-capacitor, ladder network for amplitude equalization coupled to an inductor-capacitor, lattice network including first and second order sections for phase equalization.
Abstract:
A disk drive is disclosed comprising a plurality of disk surfaces, and a plurality of heads actuated over the respective disk surfaces. In one embodiment, control circuitry generates a pulse duty cycle signal for one of the heads. In another embodiment, the control circuitry generates a first pulse width modulated signal for a first head, and a second pulse width modulated signal for a second head, wherein the second pulse width modulated signal comprises a phase offset from the first pulse width modulated signal.