摘要:
Provided herein, among other things, is an assembly comprising a pin or a piece of jewelry and a transponder affixed thereto. The transponder can be a very small, light-triggered transponder (“MTP”).
摘要:
Disclosed are materials and methods for performing multiplex assays for nucleic acids, in which a transponder is associated with the bead(s) forming the solid phase used in the assay, nucleic acid probes are bound to the surface of the particles, and data concerning the assay is encoded on the transponder. A dedicated read/write device is used to remotely encode or read the data.
摘要:
The invention provides a method to rapidly screen chemical compounds by delivering the compounds to the assay as a coating on transponders, rather than as powder or solution. The transponder's function is to store data that identify the compound. The data can be decoded in any moment of the assay, and the identity of the desired compound established.
摘要:
Disclosed are materials and methods for practicing combinatorial protein synthesis based on ribosomal frameshifting. The genes, encoding the proteins to be synthesized, are constructed by assembly of several double-stranded DNA fragments and are cloned into bacteria. The genes include interspersed frameshifting sequences. Proteins are made in the cell by translating nucleotide sequences in a combinatorial mode. The invention can be used for the selection of new, modified or improved proteins.
摘要:
Disclosed are materials and methods for detecting biomolecules in samples employing transponders associated with the bead(s) used as the solid phase in the assay, and information pertinent to the assay is encoded on the transponders memory elements. A dedicated read/write device is used remotely to encode or remotely to read the information. The invention can be used in direct or competitive ELISA-type assays, or in multiplex assays for the simultaneous assay of several analytes.
摘要:
A method is described for determining the sequence of nucleic acids. The method employs small solid phase particles having transponders, with a primary layer of an oligonucleotide of known sequence attached to the outer surface of the particle. A read/write scanner device is used to encode and decode data on the transponder. The stored data includes the sequence of the oligonucleotide immobilized on the transponder. The sequence of sample nucleic acids is determined by detecting annealing to an oligonucleotide bound to a particle, followed by decoding the transponder to determine the sequence of the oligonucleotide.
摘要:
Provided, among other things, is a multiplex assay comprising: conducting a fluorescence-developing assay on microtabs having at least one surface that shows plasmonic enhancement, wherein a plurality of the microtabs have unique probes affixed to their plasmonically enhanced surfaces; and measuring the fluorescence associated with the substrates and identifying the correlated probe by for the microtab. The microtabs can be, for example, MTPs that send a unique identifier, and the correlated probe can be identified by querying the MTPs for their identifier.
摘要:
A method is described for determining the sequence of nucleic acids. The method employs small solid phase particles having transponders, with a primary layer of an oligonucleotide of known sequence attached to the outer surface of the particle. A read/write scanner device is used to encode and decode data on the transponder. The stored data includes the sequence of the oligonucleotide immobilized on the transponder. The sequence of sample nucleic acids is determined by detecting annealing to an oligonucleotide bound to a particle, followed by decoding the transponder to determine the sequence of the oligonucleotide.
摘要:
Disclosed are materials and methods for detecting biomolecules in samples employing transponders having memory elements associated with particle(s) used as a solid phase in art assay, and information pertinent to the assay is encoded on the transponder memory elements. A dedicated read/write device is used remotely to encode or remotely to read the information encoded on the transponder memory elements. The invention can be used in direct or competitive ELISA-type assays, or in multiplex assays for the simultaneous assay of several analytes.