摘要:
A method for forming a selective ohmic contact for a Group III-nitride heterojunction structured device may include forming a conductive layer and a capping layer on an epitaxial substrate including at least one Group III-nitride heterojunction layer and having a defined ohmic contact region, the capping layer being formed on the conductive layer or between the conductive layer and the Group III-nitride heterojunction layer in one of the ohmic contact region and non-ohmic contact region, and applying at least one of a laser annealing process and an induction annealing process on the substrate at a temperature of less than or equal to about 750° C. to complete the selective ohmic contact in the ohmic contact region.
摘要:
Provided is a method of preparing a toner, the method including: preparing a solvent emulsion by stirring a medium including a polar medium, an organic solvent, and a surfactant; adding toner components including a resin and a pigment to the solvent emulsion; removing the organic solvent from the solvent emulsion including the toner components; and collecting a toner particle from the solvent emulsion from which the organic solvent is removed.
摘要:
Disclosed herein are devices and methods for communicating full-rate voice data under an ATM protocol. An exemplary device is configured to communicate voice data through a vocoder in a CDMA backbone network using an ATM Adaptation Layer 0 (AAL0) cell-generating system, which is configured to generate an AAL0 cell for each frame of full-rate voice data. In an exemplary embodiment, the device generates AAL0 cells that each comprise (a) 5 bytes of a Header field; (b) 1 byte of a Length field indicating a size of the voice data; (c) 24 bytes of a Voice-Data field containing the voice data; (d) 19 bytes of a Control-Data field containing information for controlling the voice data; (e) 1 byte of an Error-Detection field containing information for detecting an error of the voice data; and (f) 3 bytes of a PAD field for padding data used to exactly fit into the ATM cell.
摘要:
Provided are a toner using a resin having an active hydrogen-containing group, and a method of preparing the toner. The toner using a resin having an active hydrogen-containing group includes a binder resin (A), a cross-linked resin including a THF insoluble content of 99-100 weight %, a colorant, and at least one additive. The cross-linked resin is arranged in the form of a plurality of islands in each particle of the toner.
摘要:
A toner has a core-shell structure including a toner core portion having a resin with an active hydrogenactive hydrogen containing group, a colorant and at least one additive, and a toner shell portion surrounding the toner core portion, wherein the toner shell portion includes a cross-linked resin prepared by reaction of at least a portion of the active hydrogen containing group and the cross-linking agent.
摘要:
Disclosed is a method for manufacturing a lithium transition metal phosphate. The disclosed method for manufacturing a lithium transition metal phosphate comprises the steps of: injecting reaction materials containing lithium, a transition metal, and a phosphate, into a reactor, and mixing the raw materials at the molecular level in the reactor; and allowing the reaction materials to chemically react in the reactor so as to cause nucleation.
摘要:
An electrode structure, a GaN-based semiconductor device including the electrode structure, and methods of manufacturing the same, may include a GaN-based semiconductor layer and an electrode structure on the GaN-based semiconductor layer. The electrode structure may include an electrode element including a conductive material and a diffusion layer between the electrode element and the GaN-based semiconductor layer. The diffusion layer may include a material which is an n-type dopant with respect to the GaN-based semiconductor layer, and the diffusion layer may contact the GaN-based semiconductor layer. A region of the GaN-based semiconductor layer contacting the diffusion layer may be doped with the n-type dopant. The material of the diffusion layer may comprise a Group 4 element.
摘要:
A method of preparing an electrode active material for manufacturing a lithium secondary battery exhibiting stable charging/discharging efficiency and life-cycle characteristics even during high-speed charging/discharging cycles is provided. Also, a method of controlling both a composition ratio (Ti/Li) of surface elements and a composition of a lithium element in a lithium titanium oxide which is known to be an electrode active material having a relatively stable structure is provided. The lithium secondary battery using the lithium titanium oxide manufactured by the method as the electrode active material can be stably used by maintaining charging/discharging efficiency and charging capacity even during the high-speed charging/discharging cycles.
摘要:
A method for forming a selective ohmic contact for a Group III-nitride heterojunction structured device may include forming a conductive layer and a capping layer on an epitaxial substrate including at least one Group III-nitride heterojunction layer and having a defined ohmic contact region, the capping layer being formed on the conductive layer or between the conductive layer and the Group III-nitride heterojunction layer in one of the ohmic contact region and non-ohmic contact region, and applying at least one of a laser annealing process and an induction annealing process on the substrate at a temperature of less than or equal to about 750° C. to complete the selective ohmic contact in the ohmic contact region.
摘要:
An electrode structure, a GaN-based semiconductor device including the electrode structure, and methods of manufacturing the same, may include a GaN-based semiconductor layer and an electrode structure on the GaN-based semiconductor layer. The electrode structure may include an electrode element including a conductive material and a diffusion layer between the electrode element and the GaN-based semiconductor layer. The diffusion layer may include a material which is an n-type dopant with respect to the GaN-based semiconductor layer, and the diffusion layer may contact the GaN-based semiconductor layer. A region of the GaN-based semiconductor layer contacting the diffusion layer may be doped with the n-type dopant. The material of the diffusion layer may comprise a Group 4 element.