Abstract:
A thin film transistor panel includes a substrate, a light blocking layer on the substrate, a first protective film on the light blocking layer, a first electrode and a second electrode on the first protective film, an oxide semiconductor layer on a portion of the first protective film exposed between the first electrode and the second electrode, an insulating layer, a third electrode overlapping with the oxide semiconductor layer and on the insulating layer, and a fourth electrode on the insulating layer. The light blocking layer includes first sidewalls, and the first protective film includes second sidewalls. The first and the second sidewalls are disposed along substantially the same line.
Abstract:
Microspheres for controlled release of a bioactive agent are disclosed, and in particular, blend, cross-linkable poly(propylene fumarate) for immobilization and controlled drug delivery. The microsphere includes poly(propylene fumarate), a polymeric material other than poly(propylene fumarate) (e.g., poly(lactic-co-glycolic acid)), and a bioactive agent. The bioactive agent is selected depending on the physiological effect desired. For example, in bone regeneration applications, the bioactive agent may be selected from osteoinductive agents, peptides, growth hormones, osteoconductive agents, cytokines and mixtures thereof. The bioactive agent is dispersed in the microsphere, the microsphere has a diameter in the range of 1 to 300 micrometers, the poly(propylene fumarate) and poly(lactic-co-glycolic acid) are distributed in the microsphere, and the microsphere releases the bioactive agent in a sustained manner after an initial burst release. The microspheres may be covalently attached to a poly(propylene fumarate) scaffold for tissue regeneration applications in which the bioactive agent is released from the scaffold.
Abstract:
The disclosure provides a Computed Tomography (CT) image acquisition device and a CT scan imaging system. The CT scan imaging system includes: an image acquisition device, which specifically includes a first image acquisition device (1A, 1B) and a second image acquisition device (2A, 2B) that are perpendicular to each other, wherein the first image acquisition device (1A, 1B) or the second image acquisition device (2A, 2B) includes: an X-ray tube (1A, 2A), which is used for emitting X-rays, and a detector (1B, 2B), which is arranged opposite to the X-ray tube in the vertical direction and is used for receiving the X-rays and obtaining projection data according to the X-rays; and an image processing device (4), which is used for acquiring a three-dimensional image through reconstruction of the projection data, wherein the three-dimensional image includes one or more tomographic images.
Abstract:
The disclosure provides a Computed Tomography (CT) image acquisition device and a CT scan imaging system. The CT scan imaging system includes: an image acquisition device, which specifically includes a first image acquisition device (1A, 1B) and a second image acquisition device (2A, 2B) that are perpendicular to each other, wherein the first image acquisition device (1A, 1B) or the second image acquisition device (2A, 2B) includes: an X-ray tube (1A, 2A), which is used for emitting X-rays, and a detector (1B, 2B), which is arranged opposite to the X-ray tube in the vertical direction and is used for receiving the X-rays and obtaining projection data according to the X-rays; and an image processing device (4), which is used for acquiring a three-dimensional image through reconstruction of the projection data, wherein the three-dimensional image includes one or more tomographic images.
Abstract:
A thin-film transistor (TFT) includes a gate electrode, an oxide semiconductor pattern, a source electrode, a drain electrode and an etch stopper. The gate electrode is formed on a substrate. The oxide semiconductor pattern is disposed in an area overlapping with the gate electrode. The source electrode is partially disposed on the oxide semiconductor pattern. The drain electrode is spaced apart from the source electrode, faces the source electrode, and is partially disposed on the oxide semiconductor pattern. The etch stopper has first and second end portions. The first end portion is disposed between the oxide semiconductor pattern and the source electrode, and the second end portion is disposed between the oxide semiconductor pattern and the drain electrode. A sum of first and second overlapping length is between about 30% and about 99% of a total length of the etch stopper.
Abstract:
A thin film transistor panel includes a substrate, a light blocking layer on the substrate, a first protective film on the light blocking layer, a first electrode and a second electrode on the first protective film, an oxide semiconductor layer on a portion of the first protective film exposed between the first electrode and the second electrode, an insulating layer, a third electrode overlapping with the oxide semiconductor layer and on the insulating layer, and a fourth electrode on the insulating layer. The light blocking layer includes first sidewalls, and the first protective film includes second sidewalls. The first and the second sidewalls are disposed along substantially the same line.
Abstract:
The disclosure provides a color ultrasound system and a method and a device thereof for obtaining beam-forming line data. The method comprises: a processor sending a control command according to a currently triggered color ultrasonograph mode; the processor receiving the digital ultrasonic echo signal data obtained according to the control command, wherein the digital ultrasonic echo signal data is a digital signal obtained by performing analog-to-digital conversion on an analog ultrasonic echo signal; and the processor performing beam-forming processing on the digital ultrasonic echo signal data to obtain corresponding beam-forming line data. With the disclosure, the color ultrasound system hardware is simple in design and flexible, and resource conservation and cost reduction are achieved during technical update.
Abstract:
A 3D image generation method includes controlling a G-arm frame to rotate to a target angle, and keeping the currents and voltages of two X-ray tubes unchanged during rotation, obtaining groups of 2D projection data of an object when a G-arm is in different angles, each group of 2D projection data including two paths of projection data, conducting calculation according to an FDK algorithm or an FDK correction algorithm using the groups of 2D projection data to obtain a 3D image of the object, and outputting the 3D image, thereby greatly reducing the data obtaining time by obtaining two paths of projection data, effectively reducing the irradiation time of the object, directly outputting the 3D image of the object, reflecting the full view information about the object, and solving the problem in the prior art that the irradiation time of the object under examination of X-rays is long.
Abstract:
A 3D image generation method includes controlling a G-arm frame to rotate to a target angle, and keeping the currents and voltages of two X-ray tubes unchanged during rotation, obtaining groups of 2D projection data of an object when a G-arm is in different angles, each group of 2D projection data including two paths of projection data, conducting calculation according to an FDK algorithm or an FDK correction algorithm using the groups of 2D projection data to obtain a 3D image of the object, and outputting the 3D image, thereby greatly reducing the data obtaining time by obtaining two paths of projection data, effectively reducing the irradiation time of the object, directly outputting the 3D image of the object, reflecting the full view information about the object, and solving the problem in the prior art that the irradiation time of the object under examination of X-rays is long.