Abstract:
A TFT display panel having a high charge mobility and making it possible to obtain uniform electric characteristics with respect to a large-area display is provided as well as a manufacturing method thereof. A TFT display panel includes a gate electrode formed on an insulation substrate, a first gate insulting layer formed of SiNx on the gate electrode, a second gate insulting layer formed of SiOx on the first gate insulting layer, an oxide semiconductor layer formed to overlap the gate electrode and having a channel part, and a passivation layer formed of SiOx on the oxide semiconductor layer and the gate electrode, and the passivation layer includes a contact hole exposing the drain electrode. The contact hole has a shape in which the passivation layer of a portion directly exposed together with a metal occupies an area smaller than the upper passivation layer.
Abstract:
A thin film transistor array substrate capable of reducing degradation of a device due to degradation of an oxide semiconductor pattern and a method of fabricating the same are provided. The thin film transistor array substrate may include an insulating substrate on which a gate electrode is formed, a gate insulating film formed on the insulating substrate, an oxide semiconductor pattern disposed on the gate insulating film, an anti-etching pattern formed on the oxide semiconductor pattern, and a source electrode and a drain electrode formed on the anti-etching pattern. The oxide semiconductor pattern may include an edge portion positioned between the source electrode and the drain electrode, and the edge portion may include at least one conductive region and at least one non-conductive region.
Abstract:
Provided is an oxide thin-film transistor (TFT) substrate that may enhance the display quality of a display device and a method of fabricating the same via a simple process. The oxide TFT substrate includes: a substrate, a gate line, a data line, an oxide TFT, and a pixel electrode. An oxide layer of the oxide TFT includes a first region that has semiconductor characteristics and a channel, and a second region that is conductive and surrounds the first region. A portion of the first region is electrically connected to the pixel electrode, and the second region is electrically connected to the data line.
Abstract:
A thin film transistor (TFT) array substrate and a manufacturing method thereof are provided. The TFT array substrate may include a gate line disposed on a substrate and including a gate line and a gate electrode, an oxide semiconductor layer pattern disposed on the gate electrode, a data line disposed on the oxide semiconductor layer pattern and including a source electrode and a drain electrode of a thin film transistor (TFT) together with the gate electrode, and a data line extending in a direction intersecting the gate line, and etch stop patterns disposed at an area where the TFT is formed between the source/drain electrodes and the oxide semiconductor layer pattern and at an area where the gate line and the data line overlap each other between the gate line and the data line.
Abstract:
Provided are a thin-film transistor (TFT) substrate, a method of manufacturing the same, and a display device including the same. The TFT substrate includes a gate electrode formed on a substrate, a gate insulating layer formed on the gate electrode, an oxide semiconductor pattern formed on the gate insulating layer, a source electrode formed on the oxide semiconductor pattern, a drain electrode formed on the oxide semiconductor pattern to face the source electrode, and a pixel electrode formed on the gate insulating layer.
Abstract:
Provided is a thin-film transistor (TFT) substrate. The TFT substrate includes: an insulating substrate; a semiconductor pattern which is formed on the insulating substrate, the semiconductor pattern having a top surface and a bottom surface; a source electrode and a drain electrode which are disposed on the top and bottom surfaces of the semiconductor pattern, respectively; a gate electrode which is disposed alongside the semiconductor pattern with a gate insulating film interposed therebetween; a data line which is connected to the source electrode and extends in a first direction; a gate line which is connected to the gate electrode and extends in a second direction; and a pixel electrode which is connected to the drain electrode and is formed in a pixel region.
Abstract:
Provided are a display substrate, a display device, and a method of manufacturing the display substrate. The display substrate includes: a substrate in which a pixel region is defined; a gate electrode and a gate pad are formed on the substrate; a gate insulating layer formed on the gate electrode and the gate pad; a buffer layer pattern overlaps the gate electrode and is formed on the gate insulating layer; an insulating film pattern formed on the buffer layer pattern; an oxide semiconductor pattern formed on the insulating film pattern; a source electrode formed on the oxide semiconductor pattern; and a drain electrode formed on the oxide semiconductor pattern and is separated from the source electrode.
Abstract:
The present invention provides a manufacturing method of a thin film transistor array panel, which includes forming a gate line on a substrate; forming a gate insulating layer, a semiconductor layer, and an ohmic contact on the gate line; forming a first conducting film including Mo, a second conducting film including Al, and a third conducting film including Mo on the ohmic contact; forming a first photoresist pattern on the third conducting film; etching the first, second, and third conducting films, the ohmic contact, and the semiconductor layer using the first photoresist pattern as a mask; removing the first photoresist pattern by a predetermined thickness to form a second photoresist pattern; etching the first, second, and third conducting films using the second photoresist pattern as a mask to expose a portion of the ohmic contact; and etching the exposed ohmic contact using a Cl-containing gas and a F-containing gas.
Abstract:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
Abstract:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.