摘要:
A lateral flow atomic layer deposition device according to an exemplary embodiment of the present invention eliminates a gas flow control plate in a conventional lateral flow atomic layer deposition device and controls shapes of a gas input part and a gas output part in a reactor cover to make a gas flow path to a center of a substrate shorter than a gas flow path to an edge of the substrate and thereby increase the amount of gas per unit area flowing to the center of the substrate. Therefore, film thickness in the center of the substrate in the lateral flow reactor increases.
摘要:
A deposition apparatus according to an exemplary embodiment of the present invention is a lateral-flow deposition apparatus in which in which a process gas flows between a surface where a substrate is disposed and the opposite surface, substantially in parallel with the substrate. The lateral-flow deposition apparatus includes: a substrate support that moves up/down and rotates the substrate while supporting the substrate; a reactor cover that defines a reaction chamber by contacting the substrate support; and a substrate support lifter and a substrate support rotator that move the substrate support.
摘要:
In a method and an apparatus for forming metal oxide on a substrate, a source gas including metal precursor flows along a surface of the substrate to form a metal precursor layer on the substrate. An oxidizing gas including ozone flows along a surface of the metal precursor layer to oxidize the metal precursor layer so that the metal oxide is formed on the substrate. A radio frequency power is applied to the oxidizing gas flowing along the surface of the metal precursor layer to accelerate a reaction between the metal precursor layer and the oxidizing gas. Acceleration of the oxidation reaction may improve electrical characteristics and uniformity of the metal oxide.
摘要:
In a method and an apparatus for forming metal oxide on a substrate, a source gas including metal precursor flows along a surface of the substrate to form a metal precursor layer on the substrate. An oxidizing gas including ozone flows along a surface of the metal precursor layer to oxidize the metal precursor layer so that the metal oxide is formed on the substrate. A radio frequency power is applied to the oxidizing gas flowing along the surface of the metal precursor layer to accelerate a reaction between the metal precursor layer and the oxidizing gas. Acceleration of the oxidation reaction may improve electrical characteristics and uniformity of the metal oxide.
摘要:
A method for forming an amorphous silicon thin film is disclosed. In some embodiments, a method includes loading a substrate into a reaction chamber; and conducting a plurality of deposition cycles on the substrate. Each of at least two of the cycles includes: supplying a silicon precursor to the reaction chamber during a first time period; applying radio frequency power to the reaction chamber at least partly during the first time period; stopping supplying of the silicon precursor and applying of the radio frequency power during a second time period between the first time period and an immediately subsequent deposition cycle; and supplying hydrogen plasma to the reaction chamber during a third time period between the second time period and the immediately subsequent deposition cycle. The method allows formation of an amorphous silicon film having an excellent step-coverage and a low roughness at a relatively low deposition temperature.
摘要:
A deposition apparatus according to an exemplary embodiment of the present invention is a lateral-flow deposition apparatus in which in which a process gas flows between a surface where a substrate is disposed and the opposite surface, substantially in parallel with the substrate. The lateral-flow deposition apparatus includes: a substrate support that moves up/down and rotates the substrate while supporting the substrate; a reactor cover that defines a reaction chamber by contacting the substrate support; and a substrate support lifter and a substrate support rotator that move the substrate support.
摘要:
A lateral flow atomic layer deposition device according to an exemplary embodiment of the present invention eliminates a gas flow control plate in a conventional lateral flow atomic layer deposition device and controls shapes of a gas input part and a gas output part in a reactor cover to make a gas flow path to a center of a substrate shorter than a gas flow path to an edge of the substrate and thereby increase the amount of gas per unit area flowing to the center of the substrate. Therefore, film thickness in the center of the substrate in the lateral flow reactor increases.
摘要:
In a method and an apparatus for forming metal oxide on a substrate, a source gas including metal precursor flows along a surface of the substrate to form a metal precursor layer on the substrate. An oxidizing gas including ozone flows along a surface of the metal precursor layer to oxidize the metal precursor layer so that the metal oxide is formed on the substrate. A radio frequency power is applied to the oxidizing gas flowing along the surface of the metal precursor layer to accelerate a reaction between the metal precursor layer and the oxidizing gas. Acceleration of the oxidation reaction may improve electrical characteristics and uniformity of the metal oxide.
摘要:
A method for forming an amorphous silicon thin film is disclosed. In some embodiments, a method includes loading a substrate into a reaction chamber; and conducting a plurality of deposition cycles on the substrate. Each of at least two of the cycles includes: supplying a silicon precursor to the reaction chamber during a first time period; applying radio frequency power to the reaction chamber at least partly during the first time period; stopping supplying of the silicon precursor and applying of the radio frequency power during a second time period between the first time period and an immediately subsequent deposition cycle; and supplying hydrogen plasma to the reaction chamber during a third time period between the second time period and the immediately subsequent deposition cycle. The method allows formation of an amorphous silicon film having an excellent step-coverage and a low roughness at a relatively low deposition temperature.
摘要:
Methods of depositing a silicon oxide film are disclosed. One embodiment is a plasma enhanced atomic layer deposition (PEALD) process that includes supplying a vapor phase silicon precursor, such as a diaminosilane compound, to a substrate, and supplying oxygen plasma to the substrate. Another embodiment is a pulsed hybrid method between atomic layer deposition (ALD) and chemical vapor deposition (CVD). In the other embodiment, a vapor phase silicon precursor, such as a diaminosilane compound, is supplied to a substrate while ozone gas is continuously or discontinuously supplied to the substrate.