摘要:
An underfill formulation includes a solvent (110), a plurality of amphiphilic block copolymers (120) in the solvent, and an adhesion promoter (130) in the solvent. Groups of the plurality of amphiphilic block copolymers form a plurality of micelles (140) in the solvent, with the micelles including a core (141) and a shell (142) surrounding the core, and the adhesion promoter is in the core of at least some of the plurality of micelles.
摘要:
A composite of two or more thermal interface materials (“TIMs”) is placed between a die and a heat spreader to improve cooling of the die in an integrated circuit package. The two or more TIMs vary in heat-dissipation capability depending upon the locations of die hot spots. In an embodiment, a more thermally conductive material may be positioned over one or more die hot spots, and a less thermally conductive material may be positioned abutting and/or surrounding the more thermally conductive material. The two or more TIMs may comprise a solder and a polymer. The composite TIM may be preformed as one unit or as a plurality of units. Methods of fabrication, as well as application of the package to an electronic assembly and to an electronic system, are also described.
摘要:
A composite of two or more thermal interface materials (“TIMs”) is placed between a die and a heat spreader to improve cooling of the die in an integrated circuit package. The two or more TIMs vary in heat-dissipation capability depending upon the locations of die hot spots. In an embodiment, a more thermally conductive material may be positioned over one or more die hot spots, and a less thermally conductive material may be positioned abutting and/or surrounding the more thermally conductive material. The two or more TIMs may comprise a solder and a polymer. The composite TIM may be preformed as one unit or as a plurality of units. Methods of fabrication, as well as application of the package to an electronic assembly and to an electronic system, are also described.
摘要:
An underfill formulation includes a solvent (110), a plurality of amphiphilic block copolymers (120) in the solvent, and an adhesion promoter (130) in the solvent. Groups of the plurality of amphiphilic block copolymers form a plurality of micelles (140) in the solvent, with the micelles including a core (141) and a shell (142) surrounding the core, and the adhesion promoter is in the core of at least some of the plurality of micelles.
摘要:
An underfill formulation includes a solvent (110), a plurality of amphiphilic block copolymers (120) in the solvent, and an adhesion promoter (130) in the solvent. Groups of the plurality of amphiphilic block copolymers form a plurality of micelles (140) in the solvent, with the micelles including a core (141) and a shell (142) surrounding the core, and the adhesion promoter is in the core of at least some of the plurality of micelles.
摘要:
A composite of two or more thermal interface materials (“TIMs”) is placed between a die and a heat spreader to improve cooling of the die in an integrated circuit package. The two or more TIMs vary in heat-dissipation capability depending upon the locations of die hot spots. In an embodiment, a more thermally conductive material may be positioned over one or more die hot spots, and a less thermally conductive material may be positioned abutting and/or surrounding the more thermally conductive material. The two or more TIMs may comprise a solder and a polymer. The composite TIM may be preformed as one unit or as a plurality of units. Methods of fabrication, as well as application of the package to an electronic assembly and to an electronic system, are also described.
摘要:
An underfill formulation includes a solvent (110), a plurality of amphiphilic block copolymers (120) in the solvent, and an adhesion promoter (130) in the solvent. Groups of the plurality of amphiphilic block copolymers form a plurality of micelles (140) in the solvent, with the micelles including a core (141) and a shell (142) surrounding the core, and the adhesion promoter is in the core of at least some of the plurality of micelles.
摘要:
Electronic devices and methods for fabricating electronic devices are described. One embodiment includes a method comprising providing a first body and a second body, and electrically coupling the first body to the second body using a plurality of solder bumps, wherein a gap remains between the first body and the second body. The method also includes placing an underfill material into the gap between the first body and the second body, the underfill material comprising magnetic particles in a polymer composition. The method also includes curing the underfill material in the gap by applying a magnetic field powered by alternating current, to induce heat in the magnetic particles, wherein the heat in the magnetic particles heats the polymer composition, and the magnetic field is applied for a sufficient time to cure the polymer composition. Other embodiments are described and claimed.
摘要:
A composite of two or more thermal interface materials (“TIMs”) is placed between a die and a heat spreader to improve cooling of the die in an integrated circuit package. The two or more TIMs vary in heat-dissipation capability depending upon the locations of die hot spots. In an embodiment, a more thermally conductive material may be positioned over one or more die hot spots, and a less thermally conductive material may be positioned abutting and/or surrounding the more thermally conductive material. The two or more TIMs may comprise a solder and a polymer. The composite TIM may be preformed as one unit or as a plurality of units. Methods of fabrication, as well as application of the package to an electronic assembly and to an electronic system, are also described.
摘要:
A thermal interface material may be covalently bonded to a bottom surface of a heat dissipating device and/or a backside surface of a heat generating device. The heat dissipating device may be thermally coupled to the heat generating device, the thermal interface material disposed between the bottom surface of the heat dissipating device and the backside surface of the heat generating device. The thermal interface material may comprise a polymer material with thermally conductive filler components dispersed therein. For one embodiment, the thermally conductive filler components may be covalently bonded together. For one embodiment, the thermally conductive filler components may be covalently bonded with the polymer material.