Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.
Abstract:
A photoresist pattern and a method of fabricating the same make it easy to quickly identify a particular portion of a photolithography process that is responsible for causing process defects. The method of fabricating the photoresist pattern includes forming main patterns having a predetermined critical dimension in device-forming regions of a semiconductor substrate, and forming a plurality of test patterns in scribe regions of the substrate. The scribe regions are defined alongside the device-forming regions and separate the device-forming regions from one another. The test patterns have shapes similar to that of the main patterns. Also, one of the test patterns has a critical dimensions similar to that of the main patterns, and other test patterns have respective critical dimensions that are different from the critical dimension of the main patterns.
Abstract:
A method of manufacturing a semiconductor device, and more particularly, a method of generating a layout of a semiconductor device. The method of preparing layout of a semiconductor device may include preparing a design layout including a main pattern; dividing the design layout into a plurality of first pieces of layout; preparing a plurality of second pieces of layout by providing a dummy pattern on each of the plurality of first pieces of layout; preparing a plurality of third pieces of layout by performing an optical proximity correction (OPC) process with respect to each of the plurality of second pieces of layout; and recombining the plurality of third pieces of layout.
Abstract:
In a 6F2 cell structure of a memory device and a method of fabricating the same, the plurality of active regions may have a first area at both end portions and a second area at a central portion. A portion of a bit-line contact pad may be positioned on the second area and the other portion may be positioned on a third area of the substrate that may not overlap with the plurality of active regions. The bit line may be connected with the bit-line contact pad at the third area. The cell structure may be more easily formed despite a 6F2-structured unit cell. The plurality of active regions may have an elliptical shape including major and minor axes. The plurality of active regions may be positioned in a major axis direction to thereby form an active row, and may be positioned in a minor axis direction in such a structure that a center of the plurality of active regions is shifted from that of an adjacent active region in a neighboring active row.
Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions and a field isolation layer on the substrate surrounding the active regions of the substrate. Each of the plurality of active regions may have a length in a direction of a first axis and a width in a direction of a second axis, and the length may be greater than the width. The plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis, and active regions of adjacent columns may be offset in the direction of the second axis.
Abstract:
A method of manufacturing an integrated circuit, a system for carrying out the method, and a system for verifying an integrated circuit may use a standard cell layout including a first layout region that may violate design rules. The method for designing an integrated circuit may comprise receiving a data file that includes a scaling enhanced circuit layout, and designing a first standard cell layout using design rules and the data file. The designing the first standard cell layout may include designing a first layout region of the first standard cell layout using the data file, and designing a second region of the first standard cell layout using the design rules.
Abstract:
A method of fabricating a semiconductor device includes preparing a layout of the semiconductor device, obtaining contrast of an exposure image of the layout through a simulation under a condition of using a crosspole illumination system, separating the layout into a plurality of sub-layouts based on the contrast of the exposure image, forming a photomask having a mask pattern corresponding to the plurality of sub-layouts, and performing an exposure process using the photomask under an exposure condition of using a dipole illumination system.
Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.
Abstract:
A semiconductor memory device may include a semiconductor substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a drain portion of a respective active region of each column, and with each bitline crossing drain portions of active regions of adjacent columns in different directions so that different portions of a same bitline are aligned in different directions on different active regions of adjacent columns.
Abstract:
The present invention relates to a method for preparing fine powdered cellulose ethers. In particular, the present invention relates to a method for preparing cellulose ethers in a cost-effective manner having high running efficiency of process, which comprises specifically regulating a reaction condition of each step to induce a particle refinement and significantly reduce a running load on a grinding process, in the reaction of treating finely pulverized celluloses with a caustic soda and reacting with an etherifying agent.