Abstract:
The present invention is a pressure sensitive adhesive including the reactive product of a copolymer of an alkyl(meth)acrylate, a multifunctional cross-linker, and at least one of an amine-containing (meth)acrylate and a blocked isocyanate-containing (meth)acrylate.
Abstract:
An optical system includes an optical film curved about a first axis and a light control film curved about the first axis. The light control film can be disposed between a light source and the optical film. The optical film includes a microstructured first major surface and an opposing second major surface. The microstructured first major surface defines a linear Fresnel lens including a plurality of Fresnel elements extending longitudinally along the first axis. The first major surface of the optical film faces the light control film. The light control film can include a plurality of alternating optically transmissive and optically absorptive regions extending longitudinally along the first axis such that in a cross-section orthogonal to the first axis, for at least a majority of the optically transmissive regions, a centerline between adjacent optically absorptive regions is substantially normal to a major surface of the light control film.
Abstract:
An optical system includes a light source, an optical film curved about a first axis, and a light control film curved about the first axis and disposed between the light source and the optical film. The optical film includes a microstructured first major surface and an opposing second major surface. The microstructured first major surface defines a linear Fresnel lens including a plurality of Fresnel elements extending longitudinally along the first axis. The first major surface of the optical film faces the light control film. The light control film includes a plurality of alternating optically transmissive and optically absorptive regions extending longitudinally along the first axis such that in a cross-section orthogonal to the first axis, for at least a majority of the optically transmissive regions, a centerline between adjacent optically absorptive regions is substantially normal to a major surface of the light control film.
Abstract:
A liquid crystal display comprises a backlight module comprising a reflective polarizing film, a light control film and a liquid crystal panel disposed between the backlight module and the light control film. The light control film comprises a light input surface and a light output surface opposite the light input surface and alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30.
Abstract:
A liquid crystal display comprises a backlight module comprising a reflective polarizing film, a light control film and a liquid crystal panel disposed between the backlight module and the light control film. The light control film comprises a light input surface and a light output surface opposite the light input surface and alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30.
Abstract:
An optical film assembly comprises a light redirecting film (110) having a first structured major surface (112) and a second, opposed major surface (114). An optical adhesive layer (120) is disposed on the second major surface of the light redirecting film. A light diffusion film (140) comprises a first major surface (142) comprising a light diffusion surface and a second, opposed major surface (144). A plurality of discrete optical decoupling structures (146) project from the light diffusion surface and contact the optical adhesive layer. An air gap (148) is defined between the first major surface of the light diffusion film and the optical adhesive layer. Embodiments of optical film assemblies described herein are useful, for example, for hiding optical defects and improving the brightness uniformity of light emitted by a light source.
Abstract:
A transparent conductor is provided, including a visible light transparent substrate and metal traces disposed on the substrate, and a layer of a second metal deposited on at least a portion of the metal traces. The transparent conductor further includes a layer of a second metal, which conforms to the surface structure of the metal traces on which it is deposited. Optionally, the transparent conductor also includes a coating layer disposed on a portion of the metal traces and the substrate surface. The coating layer includes a polymer prepared from a polymerizable composition containing at least one ionic liquid monomer. A method of forming a transparent conductor is also provided, including obtaining a visible light transparent substrate having metal traces disposed on the substrate and applying a coating composition on a portion of the metal traces and substrate. The coating composition contains at least one noble metal salt and at least one polymerizable ionic liquid monomer.
Abstract:
A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
Abstract:
This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
Abstract:
An electronically switchable privacy device suitable for use in display devices is described. The electronically switchable privacy device comprises a first transparent electrode layer, an electronically switchable layer disposed adjacent to the first transparent electrode layer, and a second transparent electrode layer disposed adjacent to the electronically switchable layer and opposite the first transparent electrode layer. The second transparent electrode layer comprises a transparent substrate layer having a plurality of microstructured ribs extending across a major surface of the transparent substrate layer such that the microstructured ribs form an alternating series of ribs and channels, each channel having channel walls defined by adjacent ribs. A plurality of transparent electrode members comprising a transparent electrode material are disposed on at least one channel wall in a corresponding plurality of the channels; and a bus member provides electrical connectivity across the plurality of transparent electrode members. A spacer element disposed in the electronically switchable layer keeps the first transparent electrode layer spaced apart from the second transparent electrode layer. A portion of the electronically switchable layer at least partially fills the plurality of channels and makes electrical contact with the plurality of transparent electrode members. The electronically switchable layer comprises an electronically switchable material capable of modulation between high and low light absorption states upon application of a direct current voltage across the first and second transparent electrode layers.